
EXPERIMENTS IN ORGANIC CHEMISTRY

A.3	Dangerous	Preventive Measures; H and P phrases			
	reagents				
	Cyclohexanol	H302+H312+H332Harmful if swallowed, in contact with skin or if			
		inhaled.			
		H315Causes skin irritation.			
		P302+P352IF ON SKIN: Wash with plenty of soap and water.			
		P304+P340IF INHALED: Remove person to fresh air and keep			
		comfortable for breathing.			
	Bromine	H314Causes severe skin burns and eye damage.			
		H330Fatal if inhaled.			
		P260Do not breathe dust/ fume/ gas/ mist/ vapours/ spray.			
		P273Avoid release to the environment			
	CH ₂ CL ₂	H351: Suspected of causing cancer [Warning Carcinogenicity].			
		P201: Obtain special instructions before use.			
		P202: Do not handle until all safety precautions have been read and			
		understood.			
	H ₃ PO ₄	H314: Causes severe skin burns and eye damage [Danger Skin			
		corrosion/irritation].			
		P260: Do not breathe dust/fume/gas/mist/vapors/spray.			
		P264: Wash thoroughly after handling.			
	Na ₂ CO ₃	H319: Causes serious eye irritation [Warning Serious eye			
		damage/eye irritation]			
		P280: Wear protective gloves/protective clothing/eye			
		protection/face protection			
	Na₂SO₄ (anhy.)	H315 (100%): Causes skin irritation [Warning Skin			
		corrosion/irritation]			
		H318 (100%): Causes serious eye damage [Danger Serious eye			
		damage/eye irritation]			
A.4	Experimental procedure				

Elimination:

- 1. Take 20mL of Cyclohexanol and weight it in the bottom round flask. Then, add 6mL of H_3PO_4 to the flask and stir it.
- 2. After that, we have to prepare the set up so as to do the distillation.
- 3. Start with the heating, heat the flask gently (for 15-30min) and make sure it doesn't go up 100°C.
- 4. Then we have to do the purification of the compound, we have to get rid of the water and cyclohexanol we obtained with the cyclohexene.
- 5. We will pour the distillation product to the extraction funnel and we will add NaCl aqueous solution. We will shake the funnel and get rid of the gasses.
- 6. We will extract first the aqueous phase and then we will collect the organic one in an Erlenmeyer flask.
- 7. Then, we have to dry the cyclohexene, so we will add some Na_2SO_4 and let to settle.
- 8. Filtrate the solution and prepare a second distillation to finish with the purification, collect the cyclohexene and weight the product.

Addition:

- 9. Take 100mg of the compound obtained and dissolved in CH_2Cl_2 .
- 10. Add slowly Br₂/CH₂Cl₂ to the solution while stirring gently. Add until no color change happens, until the remaining color is red.
- 11. Then we will use a rotavapor so as to eliminate the excess of bromine and the CH_2CI_2 .

EXPERIMENTS IN ORGANIC CHEMISTRY

В	RESULTS							
B.1	Molecular formula: C ₆ H ₁₀	M.W. (g/mol): 82,143		Density: 0,811	State: Liquid	Color: It has no color.		
	Theoretical weight or volume of the final product: $g = 0,192 \times 82,143 = 15,77g$ Measured experimental weight or volume of the final product: g = 10g			Theoretical melting point or boiling point (°C): - Boiling point: 83°C - Melting poin: -103,5°C				
	Molecular Formula: C ₆ H ₁₀ Br ₂	M.W. (g/mol): 241,95		Density: 1,784	State: Liquid	Color: colorless, slightly yellow		
	Theoretical weight or volume of the final product: $g = 0.998 \times 10^{-3} \times 241.95$ = 0.241g			Theoretical melting point or boiling point(°C):Boiling point: 145°CMelting point: -5°C				
B.2	Measured experimental weight or volume of the final product: $g = 0,2g$ Yield. Analysis of the results							
			1					
	Reagent	g	MW	mol	δ	mL		
	C ₆ H ₁₁ OH C ₆ H ₁₀	19,24 10 0,1	84,16 82,143	0,192 0,122 0,998E-	0,962 0,811 03	20		
	C ₆ H ₁₀ Br2	0,2	241,95			_		
	First we are going to calculate the yield for the cyclohexene:							

B.3	Spectroscopic Data:
Cyclohexe	ne:
 ¹H δ 5 δ 1 δ 1 δ 2 δ 1 δ 2 δ 2 δ 1 δ 4 δ 2 δ 1 δ 3 δ 2 IR: 	NMR: ,67 the singlet belongs to proton Ha. ,99-1,49 the singlet has to do with Hb and Hc. ,69-1,49 This singlet belongs to Hd. NMR: 27,3 it has to do with the carbon that belongs to de alkene (C1). C3 \subset C1 5,3 it belongs to C2. 2,8 it belongs to C3. ere is an interesting peak at around 1600 wavenumbers, that can mbolize the double bond of the cyclohexene. We also have an aliphatic etching in around 2900 wavenumbers. nocyclohexane: NMR: ,54-4,30 a multiplate that belongs to Ha. 4,41 another multiplate that belongs to Hb. ,93-1,62 a multiplate that belongs to Hb. ,93-1,62 a multiplate that belongs to Hd. NMR: 5,2 it belongs to C1. 1,9 it belongs to C2. 2,4 it has to do with C3.
	e appears a pointed signal at around 550 wavenumbers. We can assume at this signal belongs to an halogenated bond.
	Conclusions
how to pe This all has	couldn't course the subject as we were supposed to, we have learned rform two of the basic reactions in organic chemistry, as the mechanism. s been useful to the theoretical subject and somehow also to have an idea erimental procedure.