CHAPTER 8.DIMENSIONAL ANALYSIS AND SIMILITUDE

- 1. Necessity of experimental measurements with scaled models
- 2. Homogeneity: Buckingham Pi theorem
- 3. Mechanical similitude of fluid flows

1. Necessity of experimental measurements with scaled models

- ✓ Different forms to solve a problem of Fluid Mechanics or Hydraulic Engineering:
 - Analytical: Sometimes the solutions are unknown
 - Computational: computation capacity is not infinite, necessity of empirical correlation
 - Experimental: necessity of laboratory experiments with models or mock-ups.

- ✓ Formulation
 - Physical phenomenon:
 - "n" Physical variables:

(A,B,C,...,N)

f(A,B,C,...,N) = 0

- "m" fundamental dimensions: usually 3 in fluid mechanics: M, L y T
- It can be defined:

$$F(\Pi_1, \Pi_2, ..., \Pi_{n-m}) = 0$$

With (n-m) dimensionless groups:

Π_i=Α^{αi} Β^{βi} C^{γi} ... Ν^{νi}

- \checkmark Method of repeating variables

 - 2. Selection of repeating variables (m)
 - 3. Generate the dimensionless groups Π
 - 4. Calculation of the exponents

- ✓ Useful guidelines
 - Dimensionless physical variable, dimensionless Π group
 - Variables with the same dimensions, quotient dimensionless group
 - Any Π number can be substituted by:
 - a power of itself
 - the product by a constant
 - the quotient of two Π groups
 - Any Π number can be expressed as a function of other Π numbers

EXAMPLE 1: SIMPLE PENDULUM

m=3 fundamental dimensions: M, L, T

N^o of dimensionless groups: n-m = 4-3 = 1

STEP 2: m = 3 repeating variables are selected: t, l y m

STEP 3: Dimensionless group: $\Pi = t^{\alpha} I^{\beta} m^{\gamma} W$

EXAMPLE 2: DRAG RESISTANCE THAT A FLUID EXERTS ON THE MOTION OF A PARTIALLY SUBMERGED BODY

STEP 1: Acting variables: n = 7 variables

 $F[MLT^{-2}] \quad U[LT^{-1}] \quad \epsilon[L] \quad g[LT^{-2}] \quad I[L] \quad \rho[ML^{-3}] \quad \mu[ML^{-1}T^{-1}]$

m=3 fundamental dimensions: T, L y M No of dimensionless groups: n-m = 7-3 = 4

STEP 2: Repeating variables: ρ, Ι, U

STEP 3: $(n-m) = 4 \Pi$ groups.

$$\begin{split} \Pi_{1} &= \rho^{a1} |^{\beta 1} U^{\gamma 1} F \\ \Pi_{2} &= \rho^{a2} |^{\beta 2} U^{\gamma 2} \epsilon \\ \Pi_{3} &= \rho^{a3} |^{\beta 3} U^{\gamma 3} \mu \\ \Pi_{4} &= \rho^{a4} |^{\beta 4} U^{\gamma 4} g \end{split}$$

STEP 4:
$$[\Pi_1] = [M \ L^{-3}]^{\alpha 1} \ [L]^{\beta 1} \ [LT^{-1}]^{\gamma 1} \ [MLT^{-2}]$$

 $[\Pi_2] = [M \ L^{-3}]^{\alpha 2} \ [L]^{\beta 2} \ [LT^{-1}]^{\gamma 2} \ [L]$
 $[\Pi_3] = [M \ L^{-3}]^{\alpha 3} \ [L]^{\beta 3} \ [LT^{-1}]^{\gamma 3} \ [ML^{-1}T^{-1}]$
 $[\Pi_4] = [M \ L^{-3}]^{\alpha 4} \ [L]^{\beta 4} \ [LT^{-1}]^{\gamma 4} \ [LT^{-2}]$

$\Pi_1 = \frac{F}{\rho l^2 U^2}$	$\Pi_2 = \frac{\varepsilon}{1}$
$\Pi_{3}' = \Pi_{3}^{-1} =$	$\frac{\rho l U}{\mu} = Re$
$\Pi_4' = \Pi_4^{-1/2} =$	$\frac{\mathrm{U}}{\sqrt{\mathrm{lg}}} = \mathrm{Fr}$

EXAMPLE 2: DRAG RESISTANCE THAT A FLUID EXERTS ON THE MOTION OF A PARTIALLY SUBMERGED BODY

• Any Π number can be expressed as a function of other Π numbers

$$\boxed{\Pi_1 = \varphi (\Pi_2, \Pi_3, \Pi_4)} \qquad \boxed{\frac{F}{\rho l^2 U^2} = \varphi(\frac{\varepsilon}{l}, Re, Fr)} \qquad \Longrightarrow \qquad F = \rho l^2 U^2 \cdot \varphi(\frac{\varepsilon}{l}, Re, Fr)$$

$$F = \frac{1}{2} C_{\rm d} \rho A U^2$$

$$F = F_{f} + F_{w} = \frac{1}{2}C_{d,f}\rho AU^{2} + \frac{1}{2}C_{d,w}\rho AU^{2}$$

3. Mechanical similitude of fluid flows

✓ Study of the fluid related phenomena in the laboratory

- ✓ Mechanical or absolute similitude
 - Geometric similitude
 - Kinematic similitude
 - Dynamic similitude
- \checkmark Implications for the laboratory experiments:

$$\Pi_{1m} = \phi \ (\Pi_{2m}, \Pi_{3m}, ..., \Pi_{km}) = \phi \ (\Pi_{2p}, \Pi_{3p}, ..., \Pi_{kp}) = \Pi_{1p}$$

- \checkmark Calculation of the main dimensionless groups
 - Equations

 $\rho \vec{F} - \vec{\nabla} p + \frac{1}{3} \mu \vec{\nabla} (\vec{\nabla} U) + \mu \nabla^2 \vec{U} = \rho \vec{a} \qquad \text{NAVIER} - \text{STOKES EQUATION}$

 $p = C \rho^k$ PROCESS EQUATION

$$\frac{\partial \rho}{\partial t} + \vec{\nabla}(\rho \vec{U}) = 0 \qquad \text{Continuity equation}$$

The same scale relationship between terms of the same equation in PROTOTYPE and MODEL

 \checkmark Calculation of the main dimensionless groups

NAVIER - STOKES EQUATION

✓ Calculation of the main dimensionless groups

PROCESS EQUATION

✓ Calculation of the main dimensionless groups

PROCESS EQUATION
NEWTON'S VELOCITY LAW
$$c^{2} = \frac{dp}{d\rho} = \frac{kp}{\rho}$$

3.2. Physical meaning of dimensionless groups

NAME	EQUATION	MEANING	RELEVANCE
Reynolds	$Re = \frac{Ul}{v} = \frac{\rho Ul}{\mu}$	Relationship between inertial forces and viscous forces	 Differentiating the flow regime (turbulent / laminar). Viscous effects
Froude	$Fr = \frac{U}{\sqrt{gl}}$	Relationship between inertial forces and gravity forces	- Open-channel flows
Mach	$M = \frac{U}{c}$	Relationship between inertial forces and elastic forces	 Compressible flow Sound propagation (pressure waves)
Euler (Cavitation No if p-p _v instead of p)	$Eu = \frac{p}{\rho U^2}$	Relationship between pressure forces and inertial forces	- Cavitation phenomenon
Thermodynamic process exponent	k	Type of thermodynamic process a gas develops	- Compressible flow (gases)
Weber	We = $\frac{U^2 \rho L}{\sigma}$	Relationship between inertial forces and surface tension forces	 Flow with an interface between two liquids
Strouhal	$S = \frac{\omega l}{U}$	Importance of undulatory motion (angular velocity ω) in comparison to the main motion (average vel. U)	- Oscillating flows
Rossby	$Ro = \frac{U}{\Omega_{tierra} l}$	Relative importance of the Coriolis effect in the fluid flow	- geophysical flows
Relative roughness	$\frac{\epsilon}{1}$	Roughness with respect to the main length of the body	- Turbulent flow - Friction
Friction coefficient or Fanning friction factor	$C_{f} = \frac{\tau_{p}}{\frac{1}{2}\rho U^{2}}$	Relationship between shear friction stress (per unita rea) and dynamic pressure	- Friction
Friction factor	$f = \frac{h_f}{(U^2/2g)(L/D)}$	Relationship between head loss and kinetic head	- Internal viscous flow (pipes)
Drag coefficient	$C_{d} = \frac{F_{d}}{(1/2)\rho AU^{2}}$	Relationship between drag force and dynamic force	 External flow (aerodynamics, hydrodynamics)
Lift coefficient	$C_{L} = \frac{F_{L}}{(1/2)\rho AU^{2}}$	Relationship between lift force and dynamic force	 External flow (aerodynamics, hydrodynamics)

3.3. Absolute and limited similitude. Froude and Reynolds incompatibility

- ✓ Mechanical or absolute similitude
 - Geometric similitude
 - Kinematic similitude
 - Dynamic similitude
- \checkmark Implications for laboratory experiments:

 $\Pi_{1m} = \phi \ (\Pi_{2m}, \Pi_{3m}, ..., \Pi_{km}) = \phi \ (\Pi_{2p}, \Pi_{3p}, ..., \Pi_{kp}) = \Pi_{1p}$

✓ Limited or incomplete similitude. Necessity

3.3. Absolute and limited similitude. Froude and Reynolds incompatibility

- \checkmark Incompatibility between Froude and Reynolds
 - Model construction according to Froude

• Model construction according to Reynolds

$$\boxed{\mathbf{Re}_{m} = \mathbf{Re}_{p}} \qquad \boxed{\frac{\mathbf{v}_{m}}{\mathbf{v}_{p}} = \frac{\mathbf{U}_{m}}{\mathbf{U}_{p}} \frac{\mathbf{l}_{m}}{\mathbf{l}_{p}}}$$

$$\boxed{\frac{\mathbf{v}_{\mathrm{m}}}{\mathbf{v}_{\mathrm{p}}} = \sqrt{\frac{\mathbf{l}_{\mathrm{m}}}{\mathbf{l}_{\mathrm{p}}}} \frac{\mathbf{l}_{\mathrm{m}}}{\mathbf{l}_{\mathrm{p}}} = \left(\frac{\mathbf{l}_{\mathrm{m}}}{\mathbf{l}_{\mathrm{p}}}\right)^{3/2} = \lambda^{3/2}}$$

3.3. Absolute and limited similitude. Froude and Reynolds incompatibility

- ✓ Types of limited similitude
 - Mach: in any case where the compressibility of the fluid is significant (gases with high velocity)
 - **Froude**: in any case where the gravity forces are important (dams, channels, buoyancy, open flows)
 - **Reynolds**: in any case where the viscous effect is preponderant (fluid flow in closed ducts, hydraulic machines, aerodynamic tunnels with low Mach No)
 - **Euler**: in any case where the fluid pressure state is important (cavitation phenomenon)

3.4. Scale distortion

- \checkmark Necessity of scale distortion
- \checkmark Example: simulation of the flow of a river

$$\frac{Q_{m}}{Q_{p}} = \frac{A_{m}U_{m}}{A_{p}U_{p}} = \frac{\text{width}_{m} \times h_{m}}{\text{width}_{p} \times h_{p}} \sqrt{\frac{h_{m}}{h_{p}}} = \lambda_{1}\lambda_{2}\lambda_{2}^{1/2} = \lambda_{1}\lambda_{2}^{3/2}$$

Flow rate ratio

3.5. Applications: external flow

- 3.5.1. Drag force
- 3.5.2. Lift force
- 3.5.3. Flow induced vibration. Von Karman vortex street

✓ Pressure drag or form drag: separation/detachment of the boundary layer

✓ Pressure drag or form drag: separation/detachment of the boundary layer

✓ General expression of the drag force

$$F_{d} = \frac{1}{2}C_{d}\rho AU^{2}$$

- Area:
 - 1. Frontal area (projection on to the plane that is perpendicular to the motion direction) is used: in most cases, with totally immersed bodies.
 - 2. Planform area (Proj. on to the horizontal plane) is used: with streamlined bodies (such as airfoils)
 - 3. Wetted area (skin): with buoyant bodies (ships, boats)

 \checkmark Friction and pressure:

$$F_{d} = F_{d,f} + F_{d,p}$$

$$C_{d,f} = \frac{F_{d,f}}{\frac{1}{2}\rho U^{2}A} \qquad C_{d,p} = \frac{F_{d,p}}{\frac{1}{2}\rho U^{2}A} \qquad \Longrightarrow \qquad \boxed{C_{d} = C_{d,f} + C_{d,p}}$$

✓ Partially submerged bodies: " wave drag"

$$F_{w} = \frac{1}{2}C_{d,w}\rho AU^{2}$$

 \checkmark Relative importance of pressure and friction drag:

Plane plate parallel to the flow: only friction

$$F_{d} = \iint_{A} \tau_{p} dA$$

"Friction drag"

Flat plate normal to the flow: only pressure

$$F_{d} = \iint_{A_1} p dA - \iint_{A_2} p dA$$

"Pressure drag"

 \checkmark Drag coefficient: form influence

(Figures taken from Cengel)

Representative drag coefficients C_0 for various three-dimensional bodies based on the frontal area for Re > 10⁴ unless stated otherwise (for use in the drag force relation $F_0 = C_0 A_0 V^2/2$ where V is the upstream velocity)

3.5.1. Flow over cylinders and spheres

✓ Type of boundary layer, detachment:

3.5.1. Flow over cylinders and spheres

✓ Reynolds number, type of regime

(Figure taken from Cengel)

✓ Regions:

Re<1: Dominant force: friction drag F_{f} . It can be defined as: $C_{d} = k/Re$, in case of a sphere $C_{d} = 24/Re$

 $F = 6\pi R\mu U$

("Stokes formula")

1<Re<1000: Transition zone, friction drag F_f and pressure drag F_p simultaneously intervening.

1000<Re<2x10⁵: Dominant force: pressure drag F_n

Re>2 10⁵: The boundary layer becomes turbulent

3.5.1. Flow over cylinders and spheres

✓ Effect of roughness

(Taken from Cengel)

Roll torque: around flow direction Yaw torque: around lift direction Pitch torque: around lateral force direction

 $F_{L} = F_{R} \sin \phi$

FIGURE 11–5

The pressure and viscous forces acting on a two-dimensional body and the resultant lift and drag forces.

• Total forces:

$$F_{d} = \iint_{A} (-p\cos\theta + \tau_{W}\sin\theta) dA$$
$$F_{L} = \iint_{A} (-p\sin\theta - \tau_{W}\cos\theta) dA$$

• Differential area element "dA":

Shear force:	$\tau_w dA$
Normal force:	pdA

 $\begin{cases} \text{Drag contribution:} \\ dF_d = -pdA\cos\theta + \tau_w dA\sin\theta \\ \text{Lift contribution:} \\ dF_L = -pdA\sin\theta - \tau_w dA\cos\theta \end{cases}$

✓ Calculation:

 C_L : Lift coefficient (for a specific body as a function of the angle of attack α and Reynolds number (less important))

- ρ: fluid density
- A: planform area
- U: freestream velocity
- ✓ Airfoil terminology:

✓ Source:

Lift force increase:

- (1) Curvature of the airfoil (longer length of the upper surface in comparison to the lower surface)
- (2) Angle of attack (up to a value of 15° aprox.)
- (3) Use of movable leading edge and trailing edge flaps

✓ Source:

Lift force increase:

(3) Use of flaps

A flapped airfoil with a slot to prevent the separation of the boundary layer from the upper surface and to increase the lift coefficient.

(Figures taken from Cengel)

✓ Source:

Lift force increase:

(3) Use of flaps

(Photographs G. A. Esteban)

Gustavo A. Esteban - 2016

3.5.2. Lift by Magnus effect

✓ Cylinder rotation: lift generation

Figure 8.9 Fluid streamlines around a static cylinder

Figure 8.10 Stagnation points modification because of the spinning

3.5.2. Lift by Magnus effect

Drag and lift coefficients (experimental) \checkmark

Theoretical value (cylinder): ٠

$$C_{L} = \frac{2\pi\omega R}{U_{\infty}}$$

0.8

0.6

0.4

0.2

 C_D

y CL

(Figures taken from Gerhart)

CD

Voo

4

 $\frac{U}{V_{T}}$

 $U = R\omega$

 ω

► 9)

8

3.5.3. Von-Karman vortex street

✓ Phenomenon

✓ Dimensional analysis

The vortex emission rate "n" (Hz) o (s⁻¹) depends on free stream flow velocity "U", the cylinder diameter "D", fluid viscosity " μ ", fluid density " ρ ".

 Π groups describing the phenomenon:

3.5.3. Von-Karman vortex street

✓ Relationship between dimensionless numbers:

Figure 8.13 Dependence of the vortex emission rate

Figure 8.14 Takoma bridge (Washington) fallen down by "weak" wind 7th of November, 1940.

