## CHAPTER 6. INVISCID COMPRESSIBLE FLOW

- 1. Bernoulli equation for gases. Saint-Venant equation
- 2. Different behaviour of compressible fluid and incompressible fluid in isentropic flow
- 3. Concepts: generator state, stagnation state, critical state, limit velocity
- 4. Hugoniot's theorems. Application to the design of nozzles and diffusers

### 1. Bernoulli equation for gases: Saint - Venant

- 1. Isentropic flow. Saint-Venant equation
- 2. Speed of sound
- 3. Saint-Venant equation, dimensionless form

#### **1.1. Isentropic flow. Saint-Venant equation**

#### ✓ Hypotheses

 $\checkmark$  Differential energy equation of the steady-state flow of perfect gases

• Bernoulli: 
$$\int_{1}^{2} \frac{dp}{\rho} + \frac{1}{2} (U_{2}^{2} - U_{1}^{2}) + g(z_{2} - z_{1}) = 0$$

regime) valid for a streamline.

"Bernoulli equation in a

compressible fluid" (steady-state

 $\checkmark$  Saint – Venant equation:

#### **1.1. Isentropic flow. Saint-Venant equation**

✓ Saint – Venant equation, between 2 points



• Alternative expressions:

$$\boxed{\frac{U_1^2 - U_2^2}{2g} = \frac{k}{k-1} \frac{p_1}{\gamma_1} \left[ \left(\frac{\gamma_2}{\gamma_1}\right)^{k-1} - 1 \right]}$$

$$\frac{U_1^2 - U_2^2}{2g} = \frac{k}{k-1} R'(T_2 - T_1)$$

$$\frac{U_1^2 - U_2^2}{2g} = c_p'(T_2 - T_1)$$

#### **1.2. Speed of sound**

- ✓ Definition
- $\checkmark$  Newton's formula for the speed of sound:

$$c^2 = \frac{dp}{d\rho} = \frac{E_v}{\rho}$$



#### **1.2. Speed of sound**

#### ✓ Mach number:



- Flow regime classification:
  - Subsonic regime: M < 1 , U < c
  - Sonic regime or critical regime: M = 1 , U = c
  - Supersonic regime: M > 1 , U > c

#### 1.3. Saint-Venant equation, dimensionless form

 $\checkmark$  Saint – Venant equation, as a function of Mach No.











"Saint-Venant equation as a function of the Mach No."

#### **1.3. Saint-Venant equation, dimensionless form**

$$\frac{\mathbf{p}_{S}}{\mathbf{p}} = \left[1 + \frac{\mathbf{k} - 1}{2}\mathbf{M}^{2}\right]^{\frac{\mathbf{k}}{\mathbf{k} - 1}}$$

NEWTON BINOMIAL:  

$$\begin{aligned}
\left(a + x\right)^{\alpha} &= a^{\alpha} \sum_{n=0}^{\infty} \binom{\alpha}{n} \left(\frac{x}{a}\right)^{n} = a^{\alpha} \sum_{n=0}^{\infty} \frac{\alpha(\alpha - 1)...(\alpha - n + 1)}{n!} \left(\frac{x}{a}\right)^{n} \\
\left(a + x\right)^{\alpha} &= a^{\alpha} \sum_{n=0}^{\infty} \binom{\alpha}{n} \left(\frac{x}{a}\right)^{n} = a^{\alpha} \sum_{n=0}^{\infty} \frac{\alpha(\alpha - 1)...(\alpha - n + 1)}{n!} \left(\frac{x}{a}\right)^{n} \\
\left(a + x\right)^{\alpha} &= a^{\alpha} \sum_{n=0}^{\infty} \frac{\alpha(\alpha - 1)...(\alpha - n + 1)}{n!} \left(\frac{x}{a}\right)^{n} \\
\left(a + x\right)^{\alpha} &= a^{\alpha} \sum_{n=0}^{\infty} \frac{\alpha(\alpha - 1)...(\alpha - n + 1)}{n!} \left(\frac{x}{a}\right)^{n} \\
\left(a + x\right)^{\alpha} &= a^{\alpha} \sum_{n=0}^{\infty} \frac{\alpha(\alpha - 1)...(\alpha - n + 1)}{n!} \left(\frac{x}{a}\right)^{n} \\
\left(a + x\right)^{\alpha} &= a^{\alpha} \sum_{n=0}^{\infty} \frac{\alpha(\alpha - 1)...(\alpha - n + 1)}{n!} \left(\frac{x}{a}\right)^{n} \\
\left(a + x\right)^{\alpha} &= a^{\alpha} \sum_{n=0}^{\infty} \frac{\alpha(\alpha - 1)...(\alpha - n + 1)}{n!} \left(\frac{x}{a}\right)^{n} \\
\left(a + x\right)^{\alpha} &= a^{\alpha} \sum_{n=0}^{\infty} \frac{\alpha(\alpha - 1)...(\alpha - n + 1)}{n!} \left(\frac{x}{a}\right)^{n} \\
\left(a + x\right)^{\alpha} &= a^{\alpha} \sum_{n=0}^{\infty} \frac{\alpha(\alpha - 1)...(\alpha - n + 1)}{n!} \left(\frac{x}{a}\right)^{n} \\
\left(a + x\right)^{\alpha} &= a^{\alpha} \sum_{n=0}^{\infty} \frac{\alpha(\alpha - 1)...(\alpha - n + 1)}{n!} \left(\frac{x}{a}\right)^{n} \\
\left(a + x\right)^{\alpha} &= a^{\alpha} \sum_{n=0}^{\infty} \frac{\alpha(\alpha - 1)...(\alpha - n + 1)}{n!} \left(\frac{x}{a}\right)^{n} \\
\left(a + x\right)^{\alpha} &= a^{\alpha} \sum_{n=0}^{\infty} \frac{\alpha(\alpha - 1)...(\alpha - n + 1)}{n!} \left(\frac{x}{a}\right)^{n} \\
\left(a + x\right)^{\alpha} &= a^{\alpha} \sum_{n=0}^{\infty} \frac{\alpha(\alpha - 1)...(\alpha - n + 1)}{n!} \left(\frac{x}{a}\right)^{n} \\
\left(a + x\right)^{\alpha} &= a^{\alpha} \sum_{n=0}^{\infty} \frac{\alpha(\alpha - 1)...(\alpha - n + 1)}{n!} \left(\frac{x}{a}\right)^{n} \\
\left(a + x\right)^{\alpha} &= a^{\alpha} \sum_{n=0}^{\infty} \frac{\alpha(\alpha - 1)...(\alpha - n + 1)}{n!} \left(\frac{x}{a}\right)^{n} \\
\left(a + x\right)^{\alpha} &= a^{\alpha} \sum_{n=0}^{\infty} \frac{\alpha(\alpha - 1)}{n!} \left(\frac{x}{a}\right)^{n} \\
\left(a + x\right)^{\alpha} &= a^{\alpha} \sum_{n=0}^{\infty} \frac{\alpha(\alpha - 1)}{n!} \left(\frac{x}{a}\right)^{n} \\
\left(a + x\right)^{\alpha} &= a^{\alpha} \sum_{n=0}^{\infty} \frac{\alpha(\alpha - 1)}{n!} \left(\frac{x}{a}\right)^{n} \\
\left(a + x\right)^{\alpha} &= a^{\alpha} \sum_{n=0}^{\infty} \frac{\alpha(\alpha - 1)}{n!} \left(\frac{x}{a}\right)^{n} \\
\left(a + x\right)^{\alpha} &= a^{\alpha} \sum_{n=0}^{\infty} \frac{\alpha(\alpha - 1)}{n!} \left(\frac{x}{a}\right)^{n} \\
\left(a + x\right)^{\alpha} &= a^{\alpha} \sum_{n=0}^{\infty} \frac{\alpha(\alpha - 1)}{n!} \left(\frac{x}{a}\right)^{n} \\
\left(a + x\right)^{\alpha} &= a^{\alpha} \sum_{n=0}^{\infty} \frac{\alpha(\alpha - 1)}{n!} \left(\frac{x}{a}\right)^{n} \\
\left(a + x\right)^{\alpha} &= a^{\alpha} \sum_{n=0}^{\infty} \frac{\alpha(\alpha - 1)}{n!} \left(\frac{x}{a}\right)^{n} \\
\left(a + x\right)^{\alpha} &= a^{\alpha} \sum_{n=0}^{\infty} \frac{\alpha(\alpha - 1)}{n!} \left(\frac{x}{a}\right)^{\alpha} \\
\left(a + x\right)^{\alpha} &= a^{\alpha} \sum_{n=0}^{\alpha} \frac{\alpha(\alpha - 1)}{n!} \left(\frac{x}{a}\right)^{\alpha} \\$$

"Saint – Venant equation, dimensionless form"

# 2. Different behaviour of compressible fluid and incompressible fluid in isentropic flow



Saint – Venant equation, in dimensionless form



Bernoulli equation, in dimensionless form



Conclusion: a gas can be considered as incompressible fluid for a Mach number of M<0.2 by admitting an error smaller than 1% in the dimensionless form of the Saint-Venant equation

- ✓ Generator state (0)
- $\checkmark$  Stagnation state (S)



Figure 6.4 Generator state and stagnation point

✓ Perfect fluid, isentropic flow

Stagnation state (S) = Generator state (0)

$$\left\{ \begin{array}{c} p_0 = p_S \\ \gamma_0 = \gamma_S \\ T_0 = T_S \end{array} \right\}$$

- Demonstration  $\checkmark$ 
  - Saint Venant (0)-(S)
  - Ideal gas •



- Isentropic flow
- Ideal gas

$$\left. \begin{array}{c} & & \\ & & \\ \end{array} \right\rangle \qquad \boxed{\gamma_0 = \gamma_S} \qquad \boxed{p_0 = p_S} \\ \end{array}$$

✓ Generator state, Mach functions











**Figure 6.5** Characteristic variables of the flow with respect to the generator state, as a function of Mach no.

✓ Critical state



#### ✓ Limit velocity

• Saint – Venant (0)-(lim)



## 3. Experimental characterization of a gas flow

- ✓ Variables
  - 1- Mach no.: "M"
  - 2- Temperature: "T"
  - 3- Speed of sound: "c"
  - 4- Fluid velocity: "U"
  - 5- Fluid density: "ρ"
  - 6- Mass flow rate: "q<sub>m</sub>"
- ✓ Measurements Pitot Piezometer sensor Pitot Piezometer APitot Piezometer APitot Piezometer A

Figure 6.6 Characterization of a gas flow

### 3. Experimental characterization of a gas flow

 $\checkmark$  Scheme of calculation



Figure 6.7 Scheme of calculation in a standard problem with a gas flow

- $\checkmark$  Formulation of the theorems (4)
- ✓ Hugoniot's equations (2)



 $\checkmark$  Proof of the equations



 $\checkmark$  Proof of the equations



 $\checkmark$  Physical interpretation of the equations

$$\frac{\mathrm{dA}}{\mathrm{A}} = \frac{\mathrm{dU}}{\mathrm{U}}(\mathrm{M}^2 - 1)$$

#### **EQUATION 1**

• Theorem 1: Subsonic regime: M < 1

| $(M^2-1)$ | dU  | dA  |        |
|-----------|-----|-----|--------|
| (-)       | (+) | (-) | CASE A |
| (-)       | (-) | (+) | CASE B |



 $\mathrm{dA}\!<\!0$  ,  $\mathrm{dU}\!>\!0$ 

CASE A: Convergent nozzle

Velocity increase Cross section decrease dA > 0, dU < 0

Velocity decrease Cross section increase



#### CASO B: Divergent diffuser

 $\checkmark$  Physical interpretation of the equations

$$\frac{\mathrm{dA}}{\mathrm{A}} = \frac{\mathrm{dU}}{\mathrm{U}}(\mathrm{M}^2 - 1)$$

#### **EQUATION 1**

• Theorem 2: Supersonic regime: M > 1

| $(M^2-1)$ | dU  | dA  |        |
|-----------|-----|-----|--------|
| (+)       | (+) | (+) | CASE C |
| (+)       | (-) | (-) | CASE D |



CASE C: Divergent nozzle



Velocity increase Cross section increase dA < 0, dU < 0

Velocity decrease Cross section decrease



#### CASE D: Convergent diffuser

 $\checkmark$  Interpretation of the equations

$$\frac{\mathrm{dA}}{\mathrm{A}} = \frac{\mathrm{dU}}{\mathrm{U}}(\mathrm{M}^2 - 1)$$

#### **EQUATION 1**

Case: A<sub>max</sub>

• Theorem 3: Sonic regime: M = 1

$$\frac{\mathrm{dA}}{\mathrm{A}} = 0$$

Case: A<sub>min</sub>







POSSIBLE

 $\checkmark$  Physical interpretation of the equations



#### EQUATION 2

• Theorem 4: if dU > 0 then dp < 0 and if dU < 0 then dp > 0

## 4. Design of nozzles and diffusers

#### ✓ Concept: Nozzle









Gustavo A. Esteban - 2016

### 4. Design of nozzles and diffusers

#### ✓ Concept: Diffuser





Center Body Diffuser





The center body can be mounted on tracks. It must be moved further out as the aircraft files faster.

Gustavo A. Lstebarr - 2010-

## 4. Design of nozzles and diffusers

| $\checkmark$                        | Nozzle                                       |       |           |                               |                          |     |     |     |              |  |
|-------------------------------------|----------------------------------------------|-------|-----------|-------------------------------|--------------------------|-----|-----|-----|--------------|--|
|                                     |                                              |       | $(M^2-1)$ | dU                            | dA                       | dp  | dT  | dp  |              |  |
| _                                   | Subsonic regime                              | M < 1 | (-)       | (+)                           | (-)                      | (-) | (-) | (-) | CASE A       |  |
|                                     |                                              |       |           |                               |                          |     |     |     | (convergent) |  |
|                                     | Supersonic regime                            | M > 1 | (+)       | (+)                           | (+)                      | (-) | (-) | (-) | CASE C       |  |
|                                     |                                              |       |           |                               |                          |     |     |     | (divergent)  |  |
|                                     |                                              |       |           |                               |                          |     |     |     |              |  |
| $\checkmark$                        | Diffuser                                     |       |           |                               |                          |     |     |     |              |  |
|                                     |                                              |       | $(M^2-1)$ | dU                            | dA                       | dp  | dT  | dp  |              |  |
| -                                   | Subsonic regime                              | M < 1 | (-)       | (-)                           | (+)                      | (+) | (+) | (+) | CASE B       |  |
|                                     | _                                            |       |           |                               |                          |     |     |     | (divergent)  |  |
|                                     | Supersonic regime                            | M > 1 | (+)       | (-)                           | (-)                      | (+) | (+) | (+) | CASE D       |  |
|                                     |                                              |       |           |                               |                          |     |     |     | (convergent) |  |
|                                     |                                              |       |           |                               |                          |     |     |     |              |  |
|                                     | M=1                                          |       |           |                               | M=1                      |     |     |     |              |  |
| Sonc regime                         |                                              |       |           |                               | Sonic regime             |     |     |     |              |  |
|                                     |                                              |       |           |                               |                          |     |     |     |              |  |
|                                     |                                              |       |           |                               |                          |     |     |     |              |  |
|                                     | M>1 M>1                                      |       |           |                               |                          |     |     | M   | _1           |  |
|                                     | Subsonic regime Supersonic regime            |       |           |                               | M>1<br>Supersonic regime |     |     |     |              |  |
|                                     |                                              |       |           |                               |                          |     |     |     |              |  |
|                                     |                                              |       |           |                               |                          |     |     |     |              |  |
|                                     | <i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i> |       | //////    |                               |                          |     |     |     |              |  |
|                                     |                                              |       |           |                               |                          |     |     |     |              |  |
| Convergent-divergent nozzle (Laval) |                                              |       |           | Convergent-divergent diffuser |                          |     |     |     |              |  |