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1.Pascal´s law: pressure on a point, isotropy

! Isotropy in the definition of pressure

! Proof: force balance in a differential wedge of fluid
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Figura 1.28 Differential wedge of fluid

ps = px = py = pz = p

• Conclusion:



• The basic hydrostatic equation*

• Application to obtain the pressure field *: (1) constant density (liquids)

• Application to obtain the pressure field *: (2) variable density

2.The basic hydrostatic equation
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2.1. The basic hydrostatic equation

! Concept: pF ∇=ρ
rr

! Deduction. Force balance:
In a differential, static cube, centred in a point P(x,y,z) with a known pressure of 
p=p(x,y,z), downward vertical gravity
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Figure 2.1 Infinitesimal element of fluid



! Conclusions of the force balance

• The basic hydrostatic equation:
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2.1. The basic hydrostatic equation
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• Isobaric line: force of the external field is normal to any isobaric line

• Free surface, isobaric surfaces



2.2. Application to obtain the pressure field: (1)
constant density (liquids)

! Incompressible fluid, integration of the basic law 

! Use of heights and depths:
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dz
dp
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Figure 2.4 Hydrostatic equation in case of constant density.
a) General reference plane; b) Reference plane in the free surface
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! Pressure, exclusive dependence on depth
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p2 p3 p1 > p2 = p3

Figure 2.5 Pressure into tanks with different shapes and containing different liquids

2.2. Application to obtain the pressure field: (1)
constant density (liquids)
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! Principle of communicating vessels

Isobaric line ( p = Cte )
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Figure 2.6 Principle of communicating vessels
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! Pressures´ law given in heights

zpp 0 γ−= CteHpzp0 ==
γ

+=
γ

(“piezometric head”)

e = p /γ p /γ

Loading plane  ( p = 0 )

2.2. Application to obtain the pressure field: (1)
constant density (liquids)
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Figura 2.7 Piezometric head constancy
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! Equivalent liquid column

Loading plane

γ
= atmpe

p

0p ≈

2.2. Application to obtain the pressure field: (1)
constant density (liquids)
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Figura 2.8 Mercury barometer



γ=−
dz
dp

! Compressible fluid, integration of the basic law

∫∫ ρ−=γ−=
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Gases. Standard atmosphere (I.S.A.)

2.2. Application to obtain the pressure field: (2)
variable density (gases)
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Figure 2.10 Temperature evolution with 
height “z” in the earth´s atmosphere
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Measurement of pressure:

1. Piezometer (static pressure probe)*

2. U tube manometer*

3. Differential manometer*

3. Measurement of pressure
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3. Differential manometer*



3.1. Piezometer

patm

h

A
(1)γ

Figure 2.11 Piezometer

pA = γh (gauge pressure)
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Figure 2.11 Piezometer



3.2. U tube manometer

patm

hA
γ

a

(1) (1)
pA = γmh - γa

(gauge pressure)
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γm

Figure 2.12 U tube manometer

(gauge pressure)



! Differential manometer: U tube

γa

a (1)
B

γb

(1)

(2) (2)

h b

A

pA - pB = γmh + γaa - γbb

pA - pB = h(γm-γ)

“Equation of the differential 
manometer”

3.3. Differential manometer
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Figure 2.14. Two regions connected by a U tube differential manometer

γm

pA = pB - γbb + γmh + γaa 

Go up 
to (2)

Go 
down to 

(1)

Go down 
to (A)

From (B):

• “Mnemonic manometer rule”:



! Differential manometer: inverted U tube

a

(1)

γm

(2)

b

(1)

h pA = pB - γbb - γmh + γaa 

p - p = h ( γ - γ )

3.3. Differential manometer
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Figure 2.16 Inverted U tube differential manometer

pA - pB = h ( γ - γm)



3.6. Other gauges

!Bourdon manometer

Gustavo A. Esteban - 2016

Figure 2.17 Bourdon manometer, available at
the Fluid Mechanics Laboratory of the Faculty of
Engineering in Bilbao. On the left hand side a
typical manometer, on the right hand side
manometer / vacuum meter

Figure 2.18 Details of the interior 
of a Bourdon manometer



Forces on surfaces:

1. Plane surfaces*

2. Curved surfaces*

4. Forces on surfaces
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4.1. Forces on surfaces: plane surfaces

! CASE 1:
• Pressure forces caused by the atmosphere
• Pressure forces caused by gases
• Pressure forces caused by liquids on isobaric surfaces

(parallel to free surface) 

patm= 0 (gauge.)
• Resulting hydrostatic force
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Figure 2.20 Uniform pressure distribution

• Point of application
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! CASE 2: 

patm= 0 (gauge)

γ

E
dE

y
yhC

hG

h α
Z

XO

Z

• Force
ApAhE GG =γ=

• Force by a liquid on an inclined surface

Method of the formula

4.1. Forces on surfaces: plane surfaces
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Figure 2.21 Hydrostatic pressure distribution on a plane plate

• Point of application
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• Force

prismVE =

! CASE 2: 

Method of the prism
patm= 0 (gauge)
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4.1. Forces on surfaces: plane surfaces

• Force by a liquid on an inclined surface
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Figure 2.23 Method of the prism of pressures

prism,GC yy =

• Point of applicationC
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4.2. Forces on surfaces: curved surfaces

Gustavo A. Esteban - 2016

• Horizontal force:

Figure 2.24 Forces on curved surfaces

dA cosθ = dAPrVt

θ

dEdEv

dEh

θ

dA

dA senθ = dAPrHz

Figure 2.25 Force on a differential 
element of area

VtPrVtPr,Gh AhE γ=

• Point of application

• Vertical force:

ABDEv γVE =

• Point of application

A



! Curved three-dimensional surface

x
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z

Figure 2.26 Curved three-dimensional surface

4.2. Forces on surfaces: curved surfaces
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! There is not any fluid above
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Figure 2.27 Fluid below the surface

Ev= γVABDE



! Pressurized containers

Free surface
(hypothetical)

pgauge

h = (pgauge / γ)

γ

V

Ev

Figure 2.28 Pressurized container

Ev = γV

4.2. Forces on surfaces: curved surfaces
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! Vertical force, addition – subtraction of volumes

Figure 2.29 Method of addition / subtraction of volumes for 
the analysis of vertical forces
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1. Mechanics of buoyant and submerged bodies

! Equilibrium and stability of submerged bodies*

! Equilibrium and stability of partially submerged bodies*

● Calculation of the metacentric radius*

5. Mechanics of buoyant and submerged bodies
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● Calculation of the metacentric radius*

● Effect of an internal liquid mass*

● Restoring Couple*



! 1st Archimedes’ principle
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5. Mechanics of buoyant and submerged bodies
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Figure 2.31 Body submerged in a fluid with a specific weight γ

ABDFABDIHAFDIHABDAFDT V)VV(EEE γ=−γ=−=↑



! Equilibrium of totally submerged bodies
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Figure 2.32 Equilibrium of submerged bodies

E = W ; Equilibrium situation (ρ = ρs)
E > W ; The body floats (ρ > ρs)
E < W   ; The body sinks (ρ < ρs)

5. Mechanics of buoyant and submerged bodies
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! Stability of totally submerged bodies
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Figure 2.33 Study of the stability of submerged bodies



! Equilibrium of partially submerged bodies

• 2nd Archimedes´ principle:

W = γsV = E = γVsubmerged

! Stability of partially submerged bodies

• C above G:

5. Mechanics of buoyant and submerged bodies
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• C above G:
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Figure 2.34 Stable equilibrium in buoyant bodies



• G above C:

Stability
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! Stability of partially submerged bodies

5. Mechanics of buoyant and submerged bodies
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Figure 2.36 Stability of buoyant bodies in case C is below C



Nomenclature

MBuoyancy plane

Transversal plane

Longitudinal plane 

! Stability of partially submerged bodies

5. Mechanics of buoyant and submerged bodies
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C

Buoyancy axis

G

Longitudinal axis (L)

Buoyancy plane

Transversal axis (T)

Figure 2.35 Nomenclature in problems dealing with 
buoyancy

- “Hull V”
- “Centre of hull C”
- “Buoyancy axis”
- “Buoyancy (line) plane”
- “Longitudinal plane”
- “Transversal plane”
- “Longitudinal axis (L)”
- “Transversal axis (T)”
- “Rocking”
- “Pitching”



• G below C: calculation of the position of the metacentre M
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! Stability of partially submerged bodies 

5. Mechanics of buoyant and submerged bodies
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Figure 2.37 Calculation of the position of the 
metacentre with small heel angles in the buoyant body V
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• Metacentric radius:



• Internal liquid mass

G1

G’
γ

! Stability of partially submerged bodies

5. Mechanics of buoyant and submerged bodies
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Figure 2.39 Stability in case of internal liquid 
mass inside the buoyant body
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• Restoring couple

O M

θ

W
r

5. Mechanics of buoyant and submerged bodies

! Stability of partially submerged bodies
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Figure 2.42 Restoring couple

θ××= GMWM


