1. Pressure on a point. Pascal’s law
The basic hydrostatic equation
. Measurement of pressure

Forces on surfaces: plane and curved surfaces

. Mechanics of buoyant bodies and submerged bodies
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v Isotropy in the definition of pressure

v Proof: force balance in a differential wedge of fluid

e Conclusion:

Ps=Px=Py=P,=P

Figura 1.28 Differential wedge of fluid
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e The basic hydrostatic equation*
e Application to obtain the pressure field *: (1) constant density (liquids)

e Application to obtain the pressure field *: (2) variable density
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v Concept:  [oF=vp| ) p(fxi+fyj+fzk)=(api+ap3+apﬁj

ox dy 0z

v' Deduction. Force balance:

In a differential, static cube, centred in a point P(x,y,z) with a known pressure of
p=p(X,Y,z), downward vertical gravity

p+a—pg dxdy
0z 2 dp dx
p—-—— |dydz
ox 2 y

| .
o
' p(x.y.z
(P ‘gpdzdeXdZ - PN ap d
y : dz p+ P \ixdz
/l ___________ ——- ay 2
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p+ 2 dydz dy dW = ydxdydz
(p _® dZjdxdy
z 2

Figure 2.1 Infinitesimal element of fluid
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v Conclusions of the force balance

e The basic hydrostatic equation:

N
_9P _y

0x

d

_a_p=0 > ——p=’Y

dy dz
.,

0z p,

e Isobaric line: force of the external field is normal to any isobaric line

¢ Free surface, isobaric surfaces
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2.2. Application to obtain the pressure field: (1)
v Incompressible fluid, integration of the basic law
_dp _ |:> o,
dz Y p=Py—YZ
v Use of heights and depths:

P=Py—YZ
a)

____________ IC

Z

HREF(Z=0

Hger (2=0,p=pym)

P=py)
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b)

Figure 2.4 Hydrostatic equation in case of constant density.
a) General reference plane; b) Reference plane in the free surface



2.2. Application to obtain the pressure field: (1)
v’ Pressure, exclusive dependence on depth
P e-------
Hg

P1>P2=P3
Figure 2.5 Pressure into tanks with different shapes and containing different liquids
v Principle of communicating vessels
f vl | @ i N
Isobaric line ( p = Cte )
7 7 " Fluid
A,
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A2
Figure 2.6 Principle of communicating vessels

p=Cte=f

F
A, A
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2.2. Application to obtain the pressure field: (1)

v Pressures” law given in heights

p=p, -7z |:> pTO =z +$ =H =Cte| (“piezometric head”)

Loading plane (p=0)

= /
€ patm 'Y pl /,Y pz /’Y
ﬁ\—‘" — f
v "/ H=p,/y
b (Piezometric head)
Zatm Z2
Zy
_ Zl+&=zz+&=zt +paA=H=Cte
Hrer (2=0)] v v v Y Y Ty

Figura 2.7 Piezometric head constancy
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2.2. Application to obtain the pressure field: (1)

v’ Equivalent liquid column

p~0
O/ Loading plane
o _ Pan
Y
patm ______

Figura 2.8 Mercury barometer
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2.2. Application to obtain the pressure field: (2)

v’ Compressible fluid, integration of the basic law

dp VA VA
-, Y P=po— | vdz=p, -g| pdz

0 0

Gases. Standard atmosphere (1.S.A.)

_ 50 km Ionosphere

dp
______________________.}'__. —_—— = 1
| stratosphere dz ! |:> ( B jm
! ‘ P=po|l- 2
i | Troposp:here T = TO "Bz To
-56,5°C 15°C T
p=7YR'T

Figure 2.10 Temperature evolution with

A\ /4

height “z” in the earth’s atmosphere
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Measurement of pressure:

1. Piezometer (static pressure probe)*
2. U tube manometer*

3. Differential manometer*
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Figure 2.11 Piezometer
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pA=Vh

(gauge pressure)



Patm

o ¥_ - .._‘_'- pA=’Ymh_,Ya
(1) (1)

(gauge pressure)

Tm

Figure 2.12 U tube manometer
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v' Differential manometer: U tube

PA- P =7Ymh + 7,2 -1

Pa- Pg = h(y,-Y)

“Equation of the differential
manometer”

Figure 2.14. Two regions connected by a U tube differential manometer

e "Mnemonic manometer rule”:

Pa=Pg - Vpb +¥uh + 7,2
. |
From (B): Go up Go  Godown
to(2) downto to(A)
(1)
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v' Differential manometer: inverted U tube

h Pa=Pg - YpP - Yuh + V.2

Pa-Ps=h(Y-V,)

Figure 2.16 Inverted U tube differential manometer
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v'Bourdon manometer

Figure 2.17 Bourdon manometer, available at Figure 2.18 Details of the interior
the Fluid Mechanics Laboratory of the Faculty of of a Bourdon manometer
Engineering in Bilbao. On the left hand side a

typical manometer, on the right hand side

manometer / vacuum meter
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Forces on surfaces:

1. Plane surfaces*

2. Curved surfaces*
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v' CASE 1:
e Pressure forces caused by the atmosphere
e Pressure forces caused by gases
e Pressure forces caused by liquids on isobaric surfaces
(parallel to free surface)

=0 . . .
— Pum=0 (gauge.) e Resulting hydrostatic force

h
E = dA = pA
p=vh _”;p P

e Point of application

Figure 2.20 Uniform pressure distribution
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v' CASE 2:
e Force by a liquid on an inclined surface

Method of the formula

Pum= 0 (gauge) 0 X

b 4

* Force
E =vyh A =p;A

* Point of application

<
@]
Il
+
<
Q

Figure 2.21 Hydrostatic pressure distribution on a plane plate
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v' CASE 2:

e Force by a liquid on an inclined surface

Method of the prism
Pam= 0 (gauge) o X

* Force
E=V

prism

* Point of application

YC = YG,prism

€6_%

(Height, pressure value “p”)

Figure 2.23 Method of the prism of pressures
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1

APth
) dAPth
v > 7 dAp,
dA . G Prvt
PrVi
°C C
| [~~~ TTTTTTTTTmTTT T
A
Figure 2.24 Forces on curved surfaces
e Horizontal force: ¢ Vertical force:
e
dE, E, =vhg pviApw E, =7V soe
dA cosf = dAp,y,
e Point of application e Point of application

Figure 2.25 Force on a differential

element of area
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v Curved three-dimensional surface

4
=
’/I _

-7
S !
(. 1
1 1
1 1
1 1
1
1
1
1

[N
' y Figure 2.26 Curved three-dimensional surface
X
v' There is not any fluid above __Pum
E.,= YVagoe
Y
Figure 2.27 Fluid below the surface A
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v’ Pressurized containers

Free surface
(hypothetical) E,=vV

E pgauge

Figure 2.28 Pressurized container

v Vertical force, addition - subtraction of volumes

Figure 2.29 Method of addition / subtraction of volumes for
007 the analysis of vertical forces
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1. Mechanics of buoyant and submerged bodies

v' Equilibrium and stability of submerged bodies*

v' Equilibrium and stability of partially submerged bodies*

e Calculation of the metacentric radius*
e Effect of an internal liquid mass*

e Restoring Couple*
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v’ 1st Archimedes’ principle

an

T L. J

F

Figure 2.31 Body submerged in a fluid with a specific weight y

TEr =E. o —Easp =YVarom = Vasom) = YV asor
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v Equilibrium of totally submerged bodies

E=W
E>W
E<W

Figure 2.32 Equilibrium of submerged bodies

v Stability of totally submerged bodies

; Equilibrium situation (p = p,)
; The body floats (p > p.)
; The body sinks (p < p,)

= = |

E E -/ ' ’ Homogeneous

T solid

S \ W W)

. ’ Restori : ' There is not

_ w w © orlmg ' " Destabilizing anv couple

Denser region couple couple y coup
STABLE EQUILIBRIUM UNSTABLE ll_éN %ﬁigﬁ?g;;
(C above G) EQUILIBRIUM g laps C )
(G above C) (G overlaps

Figure 2.33 Study of the stability of submerged bodies
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v Equilibrium of partially submerged bodies

e 2nd Archimedes’ principle:

W=y V=E=vV

submerged

v Stability of partially submerged bodies

e C above G:

Figure 2.34 Stable equilibrium in buoyant bodies
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e G above C:

v’ Stability of partially submerged bodies

Stability

|II‘
=

Buoyancy

axis

Destabilizing
couple

,

\i

/" E
/

UNSTABLE EQUILIBRIUM

STABLE EQUILIBRIUM

Figure 2.36 Stability of buoyant bodies in case C is below C
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v’ Stability of partially submerged bodies

Nomenclature

Longitudinal plane

Transversal plane

Buoyancy plane

Transversal axis (T)

- “Hull v”

- “Centre of hull C”

- “Buoyancy axis”

- “Buoyancy (line) plane”
- “Longitudinal plane”

Longitudinal axis (L)

-

Buoyancy axis

Figure 2.35 Nomenclature in problems dealing with - “Transversal plane”
buoyancy - “Longitudinal axis (L)”
- “Transversal axis (T)”
- “Rocking”
- “Pitching”
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v’ Stability of partially submerged bodies

e G below C: calculation of the position of the metacentre M

Resultant couple by the Initial couple by the
buoyant force (after =~ =  buoyant force (before +
rocking) rocking)

\Y IXdE = yBJ‘J‘XZdA =y0I,
abOcd A

Resultant couple by the
modifications

A (Buoyancy plane)

>

dA

I
i L (Longitudinal axis)

e Metacentric radius:

PR |
Figure 2.37 Calculation of the position of the CM = L

L= [ xdA
metacentre with small heel angles in the buoyant body \Y/
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v’ Stability of partially submerged bodies

e Internal liquid mass

Glc'/ =
9 / ,Y
G ,'
/
G:/.’ FS (Free GG' = —Z Viglres.
G,y surface of the W
. — . .
V. = internal liquid
liq G2/J_¢ G,y mass)
O / !
e '

Figure 2.39 Stability in case of internal liquid
mass inside the buoyant body
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v’ Stability of partially submerged bodies

e Restoring couple

M=WxGMx6

Figure 2.42 Restoring couple
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