CHAPTER 2. FLUID STATICS

1. Pressure on a point. Pascal's law
2. The basic hydrostatic equation
3. Measurement of pressure
4. Forces on surfaces: plane and curved surfaces
5. Mechanics of buoyant bodies and submerged bodies

1. Pascal's law: pressure on a point, isotropy

\checkmark Isotropy in the definition of pressure
\checkmark Proof: force balance in a differential wedge of fluid

- Conclusion:

$$
\mathrm{p}_{\mathrm{s}}=\mathrm{p}_{\mathrm{x}}=\mathrm{p}_{\mathrm{y}}=\mathrm{p}_{\mathrm{z}}=\mathrm{p}
$$

Figura 1.28 Differential wedge of fluid

2. The basic hydrostatic equation

- The basic hydrostatic equation*
- Application to obtain the pressure field ${ }^{*}$: (1) constant density (liquids)
- Application to obtain the pressure field *: (2) variable density

2. 1. The basic hydrostatic equation

\checkmark Concept: $\quad \rho \overrightarrow{\mathrm{F}}=\vec{\nabla} \mathrm{p} \leadsto \rho\left(\mathrm{f}_{\mathrm{x}} \hat{\mathrm{i}}+\mathrm{f}_{\mathrm{y}} \hat{\mathrm{j}}+\mathrm{f}_{\mathrm{z}} \hat{\mathrm{k}}\right)=\left(\frac{\partial \mathrm{p}}{\partial \mathrm{x}} \hat{\mathrm{i}}+\frac{\partial \mathrm{p}}{\partial \mathrm{y}} \hat{\mathrm{j}}+\frac{\partial \mathrm{p}}{\partial \mathrm{z}} \hat{\mathrm{k}}\right)$
\checkmark Deduction. Force balance:
In a differential, static cube, centred in a point $P(x, y, z)$ with a known pressure of $p=p(x, y, z)$, downward vertical gravity

Figure 2.1 Infinitesimal element of fluid

2. 1. The basic hydrostatic equation

\checkmark Conclusions of the force balance

- The basic hydrostatic equation:

$$
\left.\begin{array}{|c}
\hline-\frac{\partial \mathrm{p}}{\partial \mathrm{x}}=0 \\
\hline-\frac{\partial \mathrm{p}}{\partial \mathrm{y}}=0 \\
\hline
\end{array}\right\}-\frac{\mathrm{dp}}{\mathrm{dz}}=\gamma
$$

- Isobaric line: force of the external field is normal to any isobaric line
- Free surface, isobaric surfaces

2.2. Application to obtain the pressure field: (1) constant density (liquids)

\checkmark Incompressible fluid, integration of the basic law

$$
-\frac{\mathrm{dp}}{\mathrm{dz}}=\gamma \quad \square \quad \mathrm{p}=\mathrm{p}_{0}-\gamma \mathrm{z}
$$

\checkmark Use of heights and depths:

a)

Figure 2.4 Hydrostatic equation in case of constant density.
a) General reference plane; b) Reference plane in the free surface

2.2. Application to obtain the pressure field: (1) constant density (liquids)

\checkmark Pressure, exclusive dependence on depth

Figure 2.5 Pressure into tanks with different shapes and containing different liquids
\checkmark Principle of communicating vessels

Figure 2.6 Principle of communicating vessels

2.2. Application to obtain the pressure field: (1) constant density (liquids)

\checkmark Pressures' law given in heights

$$
\mathrm{p}=\mathrm{p}_{0}-\gamma \mathrm{z} \quad \neg \quad \frac{\mathrm{p}_{0}}{\gamma}=\mathrm{z}+\frac{\mathrm{p}}{\gamma}=\mathrm{H}=\mathrm{Cte} \quad \text { ("piezometric head") }
$$

Figura 2.7 Piezometric head constancy

2.2. Application to obtain the pressure field: (1) constant density (liquids)

\checkmark Equivalent liquid column

Figura 2.8 Mercury barometer

2.2. Application to obtain the pressure field: (2) variable density (gases)

\checkmark Compressible fluid, integration of the basic law

$$
-\frac{\mathrm{dp}}{\mathrm{dz}}=\gamma \quad \mathrm{p}=\mathrm{p}_{0}-\int_{\mathrm{z} 0}^{\mathrm{z}} \gamma \mathrm{dz}=\mathrm{p}_{0}-\mathrm{g} \int_{\mathrm{z} 0}^{\mathrm{z}} \rho \mathrm{dz}
$$

Gases. Standard atmosphere (I.S.A.)

$$
\begin{aligned}
& -\frac{\mathrm{dp}}{\mathrm{dz}}=\gamma \\
& \mathrm{T}=\mathrm{T}_{0}-\mathrm{Bz}
\end{aligned} \quad \square \mathrm{p}=\mathrm{p}_{0}\left(1-\frac{\mathrm{B}}{\mathrm{~T}_{0}} \mathrm{z}\right)^{\frac{1}{\mathrm{BR}}}
$$

Figure 2.10 Temperature evolution with

$$
\mathrm{p}=\gamma \mathrm{R}^{\prime} \mathrm{T}
$$

height " z " in the earth's atmosphere

3. Measurement of pressure

Measurement of pressure:

1. Piezometer (static pressure probe)*
2. U tube manometer*
3. Differential manometer*

3.1. Piezometer

$$
p_{A}=\mathrm{yh}
$$

(gauge pressure)

Figure 2.11 Piezometer

3.2. U tube manometer

Figure 2.12 U tube manometer

3.3. Differential manometer

\checkmark Differential manometer: U tube

$$
\mathrm{p}_{\mathrm{A}}-\mathrm{p}_{\mathrm{B}}=\gamma_{\mathrm{m}} \mathrm{~h}+\gamma_{\mathrm{a}} \mathrm{a}-\gamma_{\mathrm{b}} \mathrm{~b}
$$

$$
\mathrm{p}_{\mathrm{A}}-\mathrm{p}_{\mathrm{B}}=\mathrm{h}\left(\gamma_{\mathrm{m}}-\gamma\right)
$$

"Equation of the differential manometer"

Figure 2.14. Two regions connected by a U tube differential manometer

- "Mnemonic manometer rule":

3.3. Differential manometer

\checkmark Differential manometer: inverted U tube

$$
p_{A}=p_{B}-\gamma_{b} b-\gamma_{m} h+\gamma_{a} a
$$

$$
p_{A}-p_{B}=h\left(y-v_{m}\right)
$$

Figure 2.16 Inverted U tube differential manometer

3.6. Other gauges

\checkmark Bourdon manometer

Figure 2.17 Bourdon manometer, available at the Fluid Mechanics Laboratory of the Faculty of Engineering in Bilbao. On the left hand side a typical manometer, on the right hand side manometer / vacuum meter

Figure 2.18 Details of the interior of a Bourdon manometer

4. Forces on surfaces

Forces on surfaces:

1. Plane surfaces*
2. Curved surfaces*

4.1. Forces on surfaces: plane surfaces

\checkmark CASE 1:

- Pressure forces caused by the atmosphere
- Pressure forces caused by gases
- Pressure forces caused by liquids on isobaric surfaces (parallel to free surface)

- Resulting hydrostatic force
$\mathrm{E}=\iint_{\mathrm{A}} \mathrm{pdA}=\mathrm{pA}$
- Point of application

Figure 2.20 Uniform pressure distribution

4.1. Forces on surfaces: plane surfaces

\checkmark CASE 2:

- Force by a liquid on an inclined surface

Method of the formula

- Force
$\mathrm{E}=\gamma \mathrm{h}_{\mathrm{G}} \mathrm{A}=\mathrm{p}_{\mathrm{G}} \mathrm{A}$
- Point of application

$$
\mathrm{y}_{\mathrm{C}}=\frac{\mathrm{I}_{\mathrm{xG}}}{\mathrm{y}_{\mathrm{G}} \mathrm{~A}}+\mathrm{y}_{\mathrm{G}}
$$

Figure 2.21 Hydrostatic pressure distribution on a plane plate

4.1. Forces on surfaces: plane surfaces

\checkmark CASE 2:

- Force by a liquid on an inclined surface

Method of the prism

Figure 2.23 Method of the prism of pressures

4.2. Forces on surfaces: curved surfaces

Figure 2.24 Forces on curved surfaces

- Horizontal force:

$$
\mathrm{E}_{\mathrm{h}}=\gamma \mathrm{h}_{\mathrm{G}, \mathrm{Pr} \mathrm{Pv}_{\mathrm{t}}} \mathrm{~A}_{\mathrm{Prvt}}
$$

- Point of application
- Vertical force:

- Point of application

Figure 2.25 Force on a differential element of area

4.2. Forces on surfaces: curved surfaces

\checkmark Curved three-dimensional surface

Figure 2.26 Curved three-dimensional surface
\checkmark There is not any fluid above

$$
E_{\mathrm{v}}=\gamma \mathrm{V}_{\mathrm{ABDE}}
$$

Figure 2.27 Fluid below the surface

4.2. Forces on surfaces: curved surfaces

\checkmark Pressurized containers

Figure 2.28 Pressurized container
\checkmark Vertical force, addition - subtraction of volumes

Figure 2.29 Method of addition / subtraction of volumes for the analysis of vertical forces

5. Mechanics of buoyant and submerged bodies

1. Mechanics of buoyant and submerged bodies
\checkmark Equilibrium and stability of submerged bodies*
\checkmark Equilibrium and stability of partially submerged bodies*

- Calculation of the metacentric radius*
- Effect of an internal liquid mass*
- Restoring Couple*

5. Mechanics of buoyant and submerged bodies

$\checkmark \quad$ 1st Archimedes' principle

Figure 2.31 Body submerged in a fluid with a specific weight Y

$$
\uparrow \mathrm{E}_{\mathrm{T}}=\mathrm{E}_{\mathrm{AFD}}-\mathrm{E}_{\mathrm{ABD}}=\gamma\left(\mathrm{V}_{\mathrm{AFDIH}}-\mathrm{V}_{\mathrm{ABDIH}}\right)=\gamma \mathrm{V}_{\mathrm{ABDF}}
$$

5. Mechanics of buoyant and submerged bodies

\checkmark Equilibrium of totally submerged bodies

$\mathrm{E}=\mathrm{W}$; Equilibrium situation $\left(\rho=\rho_{s}\right)$
$\mathrm{E}>\mathrm{W}$; The body floats $\left(\rho>\rho_{\mathrm{s}}\right)$
E $<\mathrm{W}$; The body sinks $\left(\rho<\rho_{s}\right)$

Figure 2.32 Equilibrium of submerged bodies
\checkmark Stability of totally submerged bodies

Figure 2.33 Study of the stability of submerged bodies

5. Mechanics of buoyant and submerged bodies

\checkmark Equilibrium of partially submerged bodies

- 2nd Archimedes' principle:

$$
\mathrm{W}=\mathrm{V}_{\mathrm{s}} \mathrm{~V}=\mathrm{E}=\mathrm{\gamma} \mathrm{~V}_{\text {submerged }}
$$

\checkmark Stability of partially submerged bodies

- C above G:

Figure 2.34 Stable equilibrium in buoyant bodies

5. Mechanics of buoyant and submerged bodies

\checkmark Stability of partially submerged bodies

- G above C:

Stability

Figure 2.36 Stability of buoyant bodies in case C is below C

5. Mechanics of buoyant and submerged bodies

\checkmark Stability of partially submerged bodies
Nomenclature

5. Mechanics of buoyant and submerged bodies

\checkmark Stability of partially submerged bodies

- G below C: calculation of the position of the metacentre M

Figure 2.37 Calculation of the position of the metacentre with small heel angles in the buoyant body

$$
\int_{\mathrm{abOcd}} \mathrm{xdE}=\gamma \theta \iint_{\mathrm{A}} \mathrm{x}^{2} \mathrm{dA}=\gamma \theta \mathrm{I}_{\mathrm{L}}
$$

- Metacentric radius:

$$
\overline{\mathrm{CM}}=\frac{\mathrm{I}_{\mathrm{L}}}{\mathrm{~V}} \quad \mathrm{I}_{\mathrm{L}}=\iint_{\mathrm{A}} \mathrm{x}^{2} \mathrm{dA}
$$

5. Mechanics of buoyant and submerged bodies

\checkmark Stability of partially submerged bodies

- Internal liquid mass

$$
\overline{\mathrm{GG}^{\prime}}=\frac{\sum \gamma_{\mathrm{liq}} \mathrm{I}_{\mathrm{FS}, \mathrm{~L}}}{\sum \mathrm{~W}}
$$

Figure 2.39 Stability in case of internal liquid mass inside the buoyant body

5. Mechanics of buoyant and submerged bodies

\checkmark Stability of partially submerged bodies

- Restoring couple

$\mathrm{M}=\mathrm{W} \times \overline{\mathrm{GM}} \times \theta$

Figure 2.42 Restoring couple

