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half-thickness L for the plane wall, and the radius r, for the long cylinder and
sphere instead of V/A used in lumped system analysis.

The one-dimensional transient heat conduction problem just described can
be solved exactly for any of the three geometries, but the solution involves in-
finite series, which are difficult to deal with. However, the terms in the solu-
tions converge rapidly with increasing time, and for T > 0.2, keeping the first
term and neglecting all the remaining terms in the series results in an error
under 2 percent. We are usually interested in the solution for times with
7 > (.2, and thus it is very convenient to express the solution using this one-
term approximation, given as

T(x, 1) — T,
S;’l‘e 0CX, £)yay = % = AjeMTcos \wIL), T>02 4-10)
. T(r,t) — T, 2
Cylinder: 0(r, ey = B Ae ™M Jy(\rfr,), 1>02 (4-11)
Sph . 0 7M7A *)\%TM > 02 4-12
phere: (r, Dspn = T, € N T . (4-12)

where the constants A; and A, are functions of the Bi number only, and their
values are listed in Table 4—1 against the Bi number for all three geometries.
The function J, is the zeroth-order Bessel function of the first kind, whose
value can be determined from Table 4-2. Noting that cos (0) = J4(0) = 1 and
the limit of (sin x)/x is also 1, these relations simplify to the next ones at the
center of a plane wall, cylinder, or sphere:

T, - T.
Center of plane wall (x = 0): 00, wan = T = A,e”‘zlT (4-13)
~ . T(} - TI 2
Center of cylinder (r = 0): 00 eyt = T = Aje Nt (4-14)
. T,—-T., 2
Center of sphere (r = 0): B0, pn = T = Aje Nt (4-15)

Once the Bi number is known, the above relations can be used to determine
the temperature anywhere in the medium. The determination of the constants
A, and \, usually requires interpolation. For those who prefer reading charts
to interpolating, the relations above are plotted and the one-term approxima-
tion solutions are presented in graphical form, known as the transient temper-
ature charts. Note that the charts are sometimes difficult to read, and they are
subject to reading errors. Therefore, the relations above should be preferred to
the charts.

The transient temperature charts in Figs. 4-13, 4-14, and 415 for a large
plane wall, long cylinder, and sphere were presented by M. P. Heisler in 1947
and are called Heisler charts. They were supplemented in 1961 with transient
heat transfer charts by H. Grober. There are three charts associated with each
geometry: the first chart is to determine the temperature 7, at the center of the
geometry at a given time £. The second chart is to determine the temperature
at other locations at the same time in terms of 7. The third chart is to deter-
mine the total amount of heat transfer up to the time 7. These plots are valid
for > 0.2.
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TABLE 4-1 TABLE 4-2
Coefficients used in the one-term approximate solution of transient one- The zeroth- and first-order Bessel
dimensional heat conduction in plane walls, cylinders, and spheres (Bi = hL/k functions of the first kind
forg plane wall of thickness 2L, and Bi = hr,/k for a cylinder or sphere of £ &) 5 (8)
radius r,)
0.0 1.0000 0.0000
Plane Wall Cylinder Sphere 0.1 0.9975 0.0499
Bi N A N Ay N Ay 0.2 0.9900 0.0995

0.3 0.9776 0.1483

0.01 0.0998 1.0017 0.1412 1.0025 0.1730 1.0030 01 0.9604 0.1960

002 01410 1.0033 0.1995 1.0050 0.2445  1.0060
0.04 01987 1.0066 0.2814 1.0099 0.3450  1.0120
006 02425 1.0098 0.3438 1.0148 0.4217 10179
008 02791 1.0130 0.3960 1.0197 0.4860 1.0239
01 03111 10161 04417 1.0246 0.5423 1.0298
02 04328 10311 06170 1.0483 07593  1.0592
03 05218 1.0450 07465 1.0712 0.9208  1.0880
04 05932 1.0580 0.8516 1.0931 1.0528 1.1164 10 07652  0.4400
05 06533 1.0701 09408 1.1143 11656 1.1441 11 07196 04709
06 07051 10814 10184 11345 12644 11713 12 06711 04983

1.3

1.4

0.5 0.9385 0.2423
0.6 0.9120 0.2867
0.7 0.8812 0.3290
0.8 0.8463 0.3688
0.9 0.8075 0.4059

0.7 0.7506  1.0918 1.0873 1.1539  1.3525 1.1978 0.6201 0.5220
0.8 0.7910 1.1016  1.1490 1.1724  1.4320 1.2236 0.5669 0.5419
0.9 0.8274 1.1107  1.2048 1.1902  1.5044  1.2488

1.0 0.8603  1.1191 1.2558  1.2071 1.5708  1.2732 1.5 0.5118 0.5579
2.0 1.0769 1.1785 1.5995 1.3384  2.0288  1.4793 1.6 0.4554 0.5699
3.0 1.1925 1.2102 1.7887 1.4191 2.2889  1.6227 1.7 0.3980 0.5778
4.0 1.2646  1.2287 1.9081 1.4698 2.4556  1.7202 1.8 0.3400 0.5815
5.0 1.3138  1.2403 1.9898 1.5029  2.5704  1.7870 1.9 0.2818 0.5812
6.0 1.3496  1.2479  2.0490 1.5253  2.6537  1.8338

7.0 1.3766 1.2532 2.0937 1.5411 2.7165 1.8673 2.0 0.2239 0.5767
8.0 1.3978 1.2570  2.1286 1.5526  2.7654 1.8920 2.1 0.1666 0.5683
9.0 1.4149 1.2598  2.1566 1.5611 2.8044 1.9106 2.2 0.1104 0.5560
10.0 1.4289 1.2620  2.1795 1.5677 2.8363 1.9249 2.3 0.0555 0.5399
20.0 1.4961 1.2699 2.2880 1.5919  2.9857 1.9781 2.4 0.0025 0.5202
30.0 1.5202 1.2717 2.3261 1.5973  3.0372 1.9898
40.0 1.5325 1.2723  2.3455 1.5993  3.0632 1.9942 2.6 —0.0968 —0.4708
50.0 1.5400 1.2727 2.3572 1.6002  3.0788 1.9962 2.8 —0.1850 —0.4097
100.0 1.5552 1.2731 2.3809 1.6015 3.1102 1.9990 3.0 —0.2601 —0.3391
© 1.5708 1.2732 2.4048 1.6021 3.1416  2.0000 3.2 —0.3202 -0.2613

Note that the case 1/Bi = k/hL = 0 corresponds to & — %, which corre-
sponds to the case of specified surface temperature T,. That is, the case in
which the surfaces of the body are suddenly brought to the temperature T,
at t+ = 0 and kept at T,, at all times can be handled by setting /4 to infinity
(Fig. 4-16).

The temperature of the body changes from the initial temperature 7; to the
temperature of the surroundings 7. at the end of the transient heat conduction
process. Thus, the maximum amount of heat that a body can gain (or lose if
T; > T,) is simply the change in the energy content of the body. That is,

Omax = 'nC])(T‘ﬁ -T)= pVCp(T‘IL -T) (kJ) (4-16)

b
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FIGURE 4-13

Transient temperature and heat transfer charts for a plane wall of thickness 2L initially at a uniform temperature 7;
subjected to convection from both sides to an environment at temperature 7., with a convection coefficient of /.

where m is the mass, V is the volume, p is the density, and C, is the specific
heat of the body. Thus, Q... represents the amount of heat transfer for t — ce.
The amount of heat transfer Q at a finite time ¢ will obviously be less than this

b
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FIGURE 4-14

Transient temperature and heat transfer charts for a long cylinder of radius r, initially at a uniform temperature 7;
subjected to convection from all sides to an environment at temperature 7, with a convection coefficient of 4.
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FIGURE 4-15

Transient temperature and heat transfer charts for a sphere of radius r, initially at a uniform temperature 7; subjected to
convection from all sides to an environment at temperature 7, with a convection coefficient of 4.

maximum. The ratio Q/Q,,,, is plotted in Figures 4-13c, 4-14¢, and 4-15¢
against the variables Bi and h?at/k? for the large plane wall, long cylinder, and

b
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sphere, respectively. Note that once the fraction of heat transfer Q/Q,,,, has
been determined from these charts for the given ¢, the actual amount of heat

transfer by that time can be evaluated by multiplying this fraction by Q.-
A negative sign for Q.. indicates that heat is leaving the body (Fig. 4-17).

. . . T, T,
’Ijhe fraction of heat transfer can also’be Qetermlned frqm these relations, 7 / \ -
which are based on the one-term approximations already discussed: h T,#T, h
(0] sin A\,
Plane wall: =1=0) g1 —~— (4-17)
Qmux wall ’ )\]
0 Ji(\) (a) Finite convection coefficient
Cylinder: ( ) =1=20p .y (4-18)
Qmax eyl ’ )\1
(0] sin A; — A\jcos \,
Sphere: 0 =1 =300 on g (4-19)
max sph 1
The use of the Heisler/Grober charts and the one-term solutions already dis-
cussed is limited to the conditions specified at the beginning of this section: /_\
the body is initially at a uniform temperature, the temperature of the medium T—vr rY—T,
surrounding the body and the convection heat transfer coefficient are constant h—eo | * fhoee
and uniform, and there is no energy generation in the body. I=T.

We discussed the physical significance of the Biot number earlier and indi-
cated that it is a measure of the relative magnitudes of the two heat transfer
mechanisms: convection at the surface and conduction through the solid.
A small value of Bi indicates that the inner resistance of the body to heat con-
duction is small relative to the resistance to convection between the surface
and the fluid. As a result, the temperature distribution within the solid be-
comes fairly uniform, and lumped system analysis becomes applicable. Recall
that when Bi < 0.1, the error in assuming the temperature within the body to
be uniform is negligible.

To understand the physical significance of the Fourier number T, we ex-
press it as (Fig. 4-18)

(b) Infinite convection coefficient

FIGURE 4-16

The specified surface

temperature corresponds to the case
of convection to an environment at
T.. with a convection coefficient &
that is infinite.

The rate at which heat is conducted
_ar _ kL (/L) AT across L of a body of volume L*

" I» pC,L¥1 AT The rate at which heat is stored
in a body of volume L?

T (4-20)

Therefore, the Fourier number is a measure of heat conducted through a body
relative to heat stored. Thus, a large value of the Fourier number indicates
faster propagation of heat through a body.

Perhaps you are wondering about what constitutes an infinitely large plate
or an infinitely long cylinder. After all, nothing in this world is infinite. A plate
whose thickness is small relative to the other dimensions can be modeled as
an infinitely large plate, except very near the outer edges. But the edge effects
on large bodies are usually negligible, and thus a large plane wall such as the
wall of a house can be modeled as an infinitely large wall for heat transfer pur-
poses. Similarly, a long cylinder whose diameter is small relative to its length
can be analyzed as an infinitely long cylinder. The use of the transient tem-
perature charts and the one-term solutions is illustrated in the following
examples.



