
half-thickness L for the plane wall, and the radius ro for the long cylinder and

sphere instead of V/A used in lumped system analysis.

The one-dimensional transient heat conduction problem just described can

be solved exactly for any of the three geometries, but the solution involves in-

finite series, which are difficult to deal with. However, the terms in the solu-

tions converge rapidly with increasing time, and for � � 0.2, keeping the first

term and neglecting all the remaining terms in the series results in an error

under 2 percent. We are usually interested in the solution for times with

� � 0.2, and thus it is very convenient to express the solution using this one-

term approximation, given as

�(x, t)wall � � A1e
��

2
1� cos (�1x/L), � � 0.2 (4-10)

Cylinder: �(r, t)cyl � � A1e
��

2
1� J0(�1r/ro), � � 0.2 (4-11)

Sphere: �(r, t)sph � � A1e
��

2
1� , � � 0.2 (4-12)

where the constants A1 and �1 are functions of the Bi number only, and their

values are listed in Table 4–1 against the Bi number for all three geometries.

The function J0 is the zeroth-order Bessel function of the first kind, whose

value can be determined from Table 4–2. Noting that cos (0) � J0(0) � 1 and

the limit of (sin x)/x is also 1, these relations simplify to the next ones at the

center of a plane wall, cylinder, or sphere:

Center of plane wall (x � 0): �0, wall � � A1e
��

2
1� (4-13)

Center of cylinder (r � 0): �0, cyl � � A1e
��

2
1� (4-14)

Center of sphere (r � 0): �0, sph � � A1e
��

2
1� (4-15)

Once the Bi number is known, the above relations can be used to determine

the temperature anywhere in the medium. The determination of the constants

A1 and �1 usually requires interpolation. For those who prefer reading charts

to interpolating, the relations above are plotted and the one-term approxima-

tion solutions are presented in graphical form, known as the transient temper-

ature charts. Note that the charts are sometimes difficult to read, and they are

subject to reading errors. Therefore, the relations above should be preferred to

the charts.

The transient temperature charts in Figs. 4–13, 4–14, and 4–15 for a large

plane wall, long cylinder, and sphere were presented by M. P. Heisler in 1947

and are called Heisler charts. They were supplemented in 1961 with transient

heat transfer charts by H. Gröber. There are three charts associated with each

geometry: the first chart is to determine the temperature To at the center of the

geometry at a given time t. The second chart is to determine the temperature

at other locations at the same time in terms of To. The third chart is to deter-

mine the total amount of heat transfer up to the time t. These plots are valid

for � � 0.2.

To � T�

Ti � T�

To � T�

Ti � T�

To � T�

Ti � T�

sin(�1r /ro)

�1r /ro

T(r, t) � T�

Ti � T�

T(r, t) � T�

Ti � T�

T(x, t) � T�

Ti � T�

Plane
wall:
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Note that the case 1/Bi � k/hL � 0 corresponds to h → �, which corre-

sponds to the case of specified surface temperature T�. That is, the case in

which the surfaces of the body are suddenly brought to the temperature T�

at t � 0 and kept at T� at all times can be handled by setting h to infinity

(Fig. 4–16).

The temperature of the body changes from the initial temperature Ti to the

temperature of the surroundings T� at the end of the transient heat conduction

process. Thus, the maximum amount of heat that a body can gain (or lose if

Ti � T�) is simply the change in the energy content of the body. That is,

Qmax � mCp(T� � Ti ) � �VCp(T� � Ti ) (kJ) (4-16)

CHAPTER 4

219

TABLE 4–1

Coefficients used in the one-term approximate solution of transient one-

dimensional heat conduction in plane walls, cylinders, and spheres (Bi � hL/k

for a plane wall of thickness 2L, and Bi � hro /k for a cylinder or sphere of

radius ro )

Plane Wall Cylinder Sphere

Bi �1 A1 �1 A1 �1 A1

0.01 0.0998 1.0017 0.1412 1.0025 0.1730 1.0030

0.02 0.1410 1.0033 0.1995 1.0050 0.2445 1.0060

0.04 0.1987 1.0066 0.2814 1.0099 0.3450 1.0120

0.06 0.2425 1.0098 0.3438 1.0148 0.4217 1.0179

0.08 0.2791 1.0130 0.3960 1.0197 0.4860 1.0239

0.1 0.3111 1.0161 0.4417 1.0246 0.5423 1.0298

0.2 0.4328 1.0311 0.6170 1.0483 0.7593 1.0592

0.3 0.5218 1.0450 0.7465 1.0712 0.9208 1.0880

0.4 0.5932 1.0580 0.8516 1.0931 1.0528 1.1164

0.5 0.6533 1.0701 0.9408 1.1143 1.1656 1.1441

0.6 0.7051 1.0814 1.0184 1.1345 1.2644 1.1713

0.7 0.7506 1.0918 1.0873 1.1539 1.3525 1.1978

0.8 0.7910 1.1016 1.1490 1.1724 1.4320 1.2236

0.9 0.8274 1.1107 1.2048 1.1902 1.5044 1.2488

1.0 0.8603 1.1191 1.2558 1.2071 1.5708 1.2732

2.0 1.0769 1.1785 1.5995 1.3384 2.0288 1.4793

3.0 1.1925 1.2102 1.7887 1.4191 2.2889 1.6227

4.0 1.2646 1.2287 1.9081 1.4698 2.4556 1.7202

5.0 1.3138 1.2403 1.9898 1.5029 2.5704 1.7870

6.0 1.3496 1.2479 2.0490 1.5253 2.6537 1.8338

7.0 1.3766 1.2532 2.0937 1.5411 2.7165 1.8673

8.0 1.3978 1.2570 2.1286 1.5526 2.7654 1.8920

9.0 1.4149 1.2598 2.1566 1.5611 2.8044 1.9106

10.0 1.4289 1.2620 2.1795 1.5677 2.8363 1.9249

20.0 1.4961 1.2699 2.2880 1.5919 2.9857 1.9781

30.0 1.5202 1.2717 2.3261 1.5973 3.0372 1.9898

40.0 1.5325 1.2723 2.3455 1.5993 3.0632 1.9942

50.0 1.5400 1.2727 2.3572 1.6002 3.0788 1.9962

100.0 1.5552 1.2731 2.3809 1.6015 3.1102 1.9990

� 1.5708 1.2732 2.4048 1.6021 3.1416 2.0000

TABLE 4–2

The zeroth- and first-order Bessel

functions of the first kind

� Jo(�) J1(�)

0.0 1.0000 0.0000

0.1 0.9975 0.0499

0.2 0.9900 0.0995

0.3 0.9776 0.1483

0.4 0.9604 0.1960

0.5 0.9385 0.2423

0.6 0.9120 0.2867

0.7 0.8812 0.3290

0.8 0.8463 0.3688

0.9 0.8075 0.4059

1.0 0.7652 0.4400

1.1 0.7196 0.4709

1.2 0.6711 0.4983

1.3 0.6201 0.5220

1.4 0.5669 0.5419

1.5 0.5118 0.5579

1.6 0.4554 0.5699

1.7 0.3980 0.5778

1.8 0.3400 0.5815

1.9 0.2818 0.5812

2.0 0.2239 0.5767

2.1 0.1666 0.5683

2.2 0.1104 0.5560

2.3 0.0555 0.5399

2.4 0.0025 0.5202

2.6 �0.0968 �0.4708

2.8 �0.1850 �0.4097

3.0 �0.2601 �0.3391

3.2 �0.3202 �0.2613
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where m is the mass, V is the volume, � is the density, and Cp is the specific

heat of the body. Thus, Qmax represents the amount of heat transfer for t → �.

The amount of heat transfer Q at a finite time t will obviously be less than this
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FIGURE 4–13

Transient temperature and heat transfer charts for a plane wall of thickness 2L initially at a uniform temperature Ti

subjected to convection from both sides to an environment at temperature T� with a convection coefficient of h.

(c) Heat transfer (from H. Gröber et al.)
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FIGURE 4–14

Transient temperature and heat transfer charts for a long cylinder of radius ro initially at a uniform temperature Ti

subjected to convection from all sides to an environment at temperature T� with a convection coefficient of h.
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maximum. The ratio Q/Qmax is plotted in Figures 4–13c, 4–14c, and 4–15c

against the variables Bi and h2�t/k2 for the large plane wall, long cylinder, and

222

HEAT TRANSFER

FIGURE 4–15

Transient temperature and heat transfer charts for a sphere of radius ro initially at a uniform temperature Ti subjected to

convection from all sides to an environment at temperature T� with a convection coefficient of h.
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sphere, respectively. Note that once the fraction of heat transfer Q/Qmax has

been determined from these charts for the given t, the actual amount of heat

transfer by that time can be evaluated by multiplying this fraction by Qmax.

A negative sign for Qmax indicates that heat is leaving the body (Fig. 4–17).

The fraction of heat transfer can also be determined from these relations,

which are based on the one-term approximations already discussed:

Plane wall: � 1 � �0, wall (4-17)

Cylinder: � 1 � 2�0, cyl (4-18)

Sphere: � 1 � 3�0, sph (4-19)

The use of the Heisler/Gröber charts and the one-term solutions already dis-

cussed is limited to the conditions specified at the beginning of this section:

the body is initially at a uniform temperature, the temperature of the medium

surrounding the body and the convection heat transfer coefficient are constant

and uniform, and there is no energy generation in the body.

We discussed the physical significance of the Biot number earlier and indi-

cated that it is a measure of the relative magnitudes of the two heat transfer

mechanisms: convection at the surface and conduction through the solid.

A small value of Bi indicates that the inner resistance of the body to heat con-

duction is small relative to the resistance to convection between the surface

and the fluid. As a result, the temperature distribution within the solid be-

comes fairly uniform, and lumped system analysis becomes applicable. Recall

that when Bi 	 0.1, the error in assuming the temperature within the body to

be uniform is negligible.

To understand the physical significance of the Fourier number �, we ex-

press it as (Fig. 4–18)

� � (4-20)

Therefore, the Fourier number is a measure of heat conducted through a body

relative to heat stored. Thus, a large value of the Fourier number indicates

faster propagation of heat through a body.

Perhaps you are wondering about what constitutes an infinitely large plate

or an infinitely long cylinder. After all, nothing in this world is infinite. A plate

whose thickness is small relative to the other dimensions can be modeled as

an infinitely large plate, except very near the outer edges. But the edge effects

on large bodies are usually negligible, and thus a large plane wall such as the

wall of a house can be modeled as an infinitely large wall for heat transfer pur-

poses. Similarly, a long cylinder whose diameter is small relative to its length

can be analyzed as an infinitely long cylinder. The use of the transient tem-

perature charts and the one-term solutions is illustrated in the following

examples.

�t

L2
�

kL2 (1/L)

�Cp L3/ t


T


T
�

The rate at which heat is conducted
across L of a body of volume L3

The rate at which heat is stored
in a body of volume L3

sin �1 � �1 cos �1

�3
1

� Q

Qmax
�

sph

J1(�1)

�1
� Q

Qmax
�

cyl

sin �1

�1
� Q

Qmax
�

wall

CHAPTER 4

223

Ts

Ts ≠ T�

Ts = T�

Ts

Ts Ts

T�T�

T�T�

hh

h → �

(a) Finite convection coefficient

(b) Infinite convection coefficient

h → �

FIGURE 4–16

The specified surface

temperature corresponds to the case

of convection to an environment at

T� with a convection coefficient h

that is infinite.
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