ADVANCED NUMERICAL METHODS
 Degree in Industrial Technology Engineering

MAY 29, 2017

TIME: 3 hours

29 points total

N.B. Exercises needing a calculator should be solved with rounding to 6 significant digits.

1.- A body moving along a 10 m -long underground pipe emits a signal whose intensity could be measured at 5 equally-spaced points according to the scheme below; the intensities obtained are the ones shown in the table.

A	B	C	D	E
1.61534	2.18174	2.25203	1.98124	1.56423

One wants to estimate the intensity of the signal at point X, located at a distance of 2 m from the pipe's midpoint, via interpolation.
a) From the estimation of truncation errors, decide whether the quadratic or the cubic interpolation is more advisable.
b) Using a numerically optimal method, and according to the answer to the previous section, estimate the intensity of the signal at point X.
2.- a) We know the cubic spline with boundary conditions determined by the nodes $x_{0}<x_{1}<\ldots<x_{n}$ and the values $f\left(x_{0}\right), f\left(x_{1}\right), \ldots, f\left(x_{n}\right), f^{\prime}\left(x_{0}\right), f^{\prime}\left(x_{n}\right)$ is optimal. Explain in what sense, and state precisely the corresponding theoretical result.
(1.5 points)
b) One wants to build a quadratic spline of class C^{1} with the nodes $x_{0}<x_{1}<\ldots<x_{n}$ and the corresponding ordinates $y_{0}, y_{1}, \ldots, y_{n}$. Can it be done ensuring that $f^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{n}\right)=0$? Justify the answer.
3.- Calculate $\int_{0}^{\pi} e^{\cos x} d x$ with 0.5% 'precision' using Gauss quadrature. (3.5 points)
4.- Calculate $\int_{1}^{3}\left(\int_{2}^{4}\left(7 y^{3}+y^{2} x\right) d y\right) d x \quad$ exactly with Newton-Cotes formulas and the least possible computational cost. Justify the choice of the formulas used. (3 points)
5.- The position in space of a moving body is described by the following system of differential equations:

$$
\left\{\begin{array}{l}
x^{\prime}(t)=x(t)-y(t)+t z(t) \\
y^{\prime}(t)=-x(t)-y(t)+z(t) \\
z^{\prime}(t)=t x(t)+y(t)-z(t)
\end{array}\right.
$$

At the initial instant the body is at point $(1,0,-1)$. Use the Enhanced Euler (Heun) method to estimate its position at instants 0.1 and 0.2 (step size $h=0.1$). (5.5 points)
6.- Find a and b for the method $y_{n}=y_{n-2}+h\left[a f_{n}+b f_{n-3}\right]$ to be convergent with the maximum possible order. Is the method obtained explicit or implicit? Of how many steps? Justify the answers.
7.- a) Obtain a numerical differentiation formula, as well as its error term in its simplest form, to estimate $f^{\prime}(z)$ from the values of f at the nodes $x_{0}, \quad x_{1}=x_{0}+h$, $x_{2}=x_{1}+2 h$, with $z=x_{0}+0.5 h$. Do it using Taylor series.
b) Justify if the formula obtained in section a) would give the exact value of $f^{\prime}\left(x_{0}+0.5 h\right)$ for this function:

$$
f(x)= \begin{cases}q(x) & x \leq x_{1} \\ r(x) & x>x_{1}\end{cases}
$$

where q and r are polynomials of degrees 2 and 3 , respectively.
c) For $f(x)=\operatorname{Ln}(3 x), \quad x_{0}=2$, and precision $\varepsilon=10^{-4}$, calculate the optimal step size $h_{\text {opt }}$ to apply the formula obtained in section a).

