ANÁLISIS Y FUNCIONAMIENTO DE MÁQUINAS ELÉCTRICAS

3º de Grado en Ingeniería en Tecnología Industrial

Curso 2015-16
Convocatoria ORDINARIA

Segundo Parcial

3 de junio de 2016

EJERCICIOS

XVIII.- Una máquina síncrona trifásica de rotor cilíndrico, 4 polos y conexión estrella, funciona como generador de acuerdo al montaje mostrado en la Figura XVIII.1.

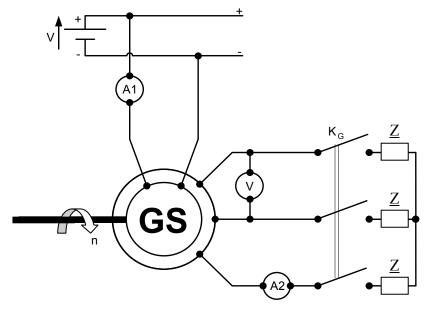


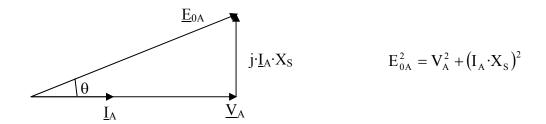
Figura XVIII.1

Los resultados de diferentes condiciones de funcionamiento se muestran en la Tabla XVIII.a

	Cargo	Velocidad	Interruptor	Lectura aparatos de medida		
	Carga	de giro	K_{G}	A 1	A2	V
Condiciones A	Resistiva pura	1500 rpm	ON	15 A	100 A	660 V
Condiciones B	Cortocircuito (Z=0)	1500 rpm	ON	5 A	125,48 A	0
Condiciones C		1800 rpm	OFF	10 A	0	¿?
Condiciones D	Inductiva pura	1500 rpm	ON	20 A	¿?	660 V

Tabla XVIII.a

NOTA: A efectos de cálculo se considerarán despreciables la resistencia del inducido, las pérdidas internas de la máquina y los efectos de la saturación.


Calcular:

101.- Lectura del voltímetro 'V' en las 'Condiciones C'.

Como la resistencia del inducido se considera despreciable, en todas las condiciones se cumple:

$$\underline{\mathbf{E}}_0 = \underline{\mathbf{V}} + \mathbf{j} \cdot \underline{\mathbf{I}} \cdot \mathbf{X}_{S}$$

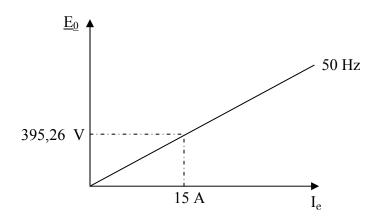
En 'Condiciones-A'

En 'Condiciones-B'

$$E_{0B} = 0 + I_B \cdot X_S$$
 (por ser situación de cortocircuito)

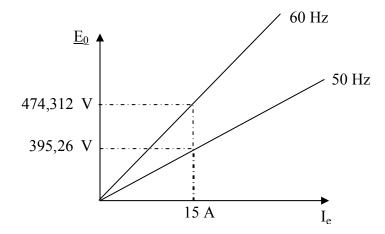
Además, como se desprecian los efectos de la saturación:

$$\frac{\mathrm{E}_{0\mathrm{A}}}{\mathrm{E}_{0\mathrm{B}}} = \frac{\mathrm{k} \cdot \mathrm{I}_{\mathrm{e}\mathrm{A}}}{\mathrm{k} \cdot \mathrm{I}_{\mathrm{e}\mathrm{B}}} = \frac{15}{5} \qquad \Longrightarrow \qquad \mathrm{E}_{0\mathrm{A}} = 3 \cdot \mathrm{E}_{0\mathrm{B}} = 3 \cdot (\mathrm{I}_{\mathrm{B}} \cdot \mathrm{X}_{\mathrm{S}})$$


Operando se obtiene el valor de la reactancia sínrona referida a 1500 rpm, es decir, a 50 Hz.

$$(3 \cdot I_B \cdot X_S)^2 = V_A^2 + (I_A \cdot X_S)^2$$

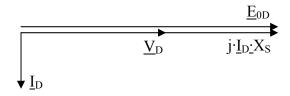
$$X_{S} = \sqrt{\frac{V_{A}^{2}}{(3 \cdot I_{B})^{2} - I_{A}^{2}}} = \sqrt{\frac{\left(660/\sqrt{3}\right)^{2}}{\left(3 \cdot 125.48\right)^{2} - 100^{2}}} = 1,05 \ \Omega$$


Además se obtiene la característica de vacío (sin saturación) a 50 Hz.

$$E_{0A} = 3 \cdot E_{0B} = 3 \cdot (I_B \cdot X_S) = 3 \cdot 125,48 \cdot 1,05 = 395,26 \text{ V}$$
 para una excitación de 15 A.

En 'Condiciones-C' el generador trabaja en vacío a 1800 rpm, es decir a 60 Hz por tener un par de polos. LA característica de vacío a 60 Hz se encuentra a partir de la de 50 Hz. Para una excitación de 15 A:

$$[E_0]_{15A,60Hz} = [E_0]_{15A,50Hz} \cdot \frac{60}{50} = 395,26 \cdot \frac{60}{50} = 474,312 \text{ V}$$


Por tanto, para una excitación de 10 A, la lectura del voltímetro (tensión fase-fase) será::

$$E_0 = 474,312 \cdot \frac{10}{15} = 316,208 \text{ V}$$
 \Rightarrow $U_0 = \sqrt{3} \cdot E_0$

$$U_0 = 547,7 \text{ V}$$

102.- Lectura del amperímetro 'A2' en las 'Condiciones D'.

En las 'Condiciones-D'

donde las magnitudes están referidas a 50 Hz que es la frecuencia correspondiente a la velocidad de 1500 rpm en las 'Condiciones-D'

$$V_{\scriptscriptstyle D} = E_{\scriptscriptstyle 0D} - I_{\scriptscriptstyle D} \cdot X_{\scriptscriptstyle S}$$

Como la intensidad de excitación es 20 A:

$$E_{0D} = 395,26 \cdot \frac{20}{15} = 527,01 \text{ V}$$

Se llega a:

$$I_D = \frac{E_{0D} - V_D}{X_S} = \frac{527,01 - (660/\sqrt{3})}{1,05} = 139 \text{ A}$$

Con lo que la lectura del amperímetro resulta ser:

I = 139 A

A continuación se hace trabajar a la máquina como motor conectando su estator a una red trifásica de 660 V y 60 Hz. El motor trabaja moviendo una carga que presenta un par resistente constante. Cuando la excitación es de 8 A trabaja con un ángulo de par de 20°.

103.- Calcular el factor de potencia que presenta el motor síncrono frente a la red trifásica en las condiciones del enunciado (excitación de 8 A y ángulo de par de 20°).

La ecuación vectorial de un motor síncrono es:

$$\underline{\mathbf{V}} = \underline{\mathbf{E}}_0 + \mathbf{j} \cdot \underline{\mathbf{I}} \cdot \mathbf{X}_{\mathbf{S}}$$

por lo que la intensidad es:

$$\underline{\mathbf{I}} = \frac{\underline{\mathbf{V}} - \underline{\mathbf{E}}_0}{\mathbf{j} \cdot \mathbf{X}_S}$$

En este caso:

$$\begin{split} \underline{V} &= \frac{660}{\sqrt{3}} \ \ \, \text{(se asigna ángulo 0° arbitrariamente)} \\ \underline{E}_0 &= 252,97 \ \ \, \boxed{20^\circ} \\ \\ \underline{J} \cdot X_S &= 1,26 \ \ \, \boxed{90^\circ} \\ \end{split} \qquad \text{(ya que a 60 Hz} \quad \Rightarrow \ \ \, \begin{bmatrix} X_S \end{bmatrix}_{60} = \begin{bmatrix} X_S \end{bmatrix}_{50} \cdot \frac{60}{50} = 1,05 \cdot \frac{60}{50} = 1,26 \ \ \, \Omega \,) \end{split}$$

Con ello resulta:

$$\underline{I} = 132,88 \mid -58,89^{\circ}$$

Por tanto:

$$\cos \varphi = \cos(58,89)$$
 \Rightarrow $\cos \varphi = 0,517$

104.- Calcular el nuevo ángulo de par si la intensidad de excitación se incrementa a 12 A.

Como el par resistente es constante, la potencia activa permanece constante ante el cambio de excitación.

$$P = P'$$
 \Rightarrow $3 \cdot \frac{V \cdot E_0}{X_S} \operatorname{sen}\theta = 3 \cdot \frac{V \cdot E_0'}{X_S} \operatorname{sen}\theta'$ \Rightarrow $E_0 \cdot \operatorname{sen}\theta = E_0' \cdot \operatorname{sen}\theta'$

$$\operatorname{sen}\theta' = \frac{\operatorname{E_0 \cdot sen}\theta}{\operatorname{E_0'}} = \frac{\left(\operatorname{k} \cdot \operatorname{I_e}\right) \operatorname{sen}\theta}{\left(\operatorname{k} \cdot \operatorname{I_e'}\right)} = \frac{\left(\operatorname{k} \cdot 8\right) \operatorname{sen} 20}{\left(\operatorname{k} \cdot 12\right)} = 0,228$$

Por tanto, el nuevo ángulo de par es:

$$\theta' = 13,18^{\circ}$$

XIX.- La placa de características de un motor asíncrono trifásico contiene los siguientes datos:

Tensión: 660 V Frecuencia: 50 Hz Conexión: estrella Intensidad: 17,5 A

Potencia: 15 kW cos φ: 0,88 Velocidad: 1431 rpm

Los ensayos realizados sobre el motor permiten determinar que sus pérdidas por rozamiento son de 850 W.

NOTA: A efectos de cálculo se considerarán despreciables la influencia de las pérdidas en el hierro y de la rama de vacío.

Calcular, cuando el motor funciona alimentado a tensión y frecuencia nominales:

105.- Relación entre las pérdidas que se producen en los bobinados del rotor y las pérdidas que se producen en los bobinados del estator.

La impedancia que presenta el motor cuando trabaja en el punto de funcionamiento nominal (datos de la placa) es:

$$Z_{eN} = \frac{V_{1N}}{I_{1N}} = \frac{660/\sqrt{3}}{17.5} = 21,7744 \Omega$$

$$R_1 + \frac{R_2'}{s_N} = Z_{eN} \cdot \cos \varphi = 21,7744 \cdot 0,88 = 19,1615 \Omega$$

$$X_1 + X_2' = Z_{eN} \cdot \text{sen} \varphi = 21,7744 \cdot \sqrt{1 - 0,88^2} = 10,3423 \ \Omega$$

A una velocidad nominal de 1431 rpm y alimentación a 50 Hz le corresponden 2 pares de polos y una velocidad síncrona de 1500 rpm.

$$s_{N} = \frac{n_{1} - n_{2N}}{n_{1}} = \frac{1500 - 1431}{1500} = 0,046$$

A partir de la potencia mecánica interna en condiciones nominales se puede hallar el valor de $\,R_{2}^{'}\,$

$$P_{miN} = P_{uN} + P_R = 15000 + 850 = 15850 \ W$$

$$P_{miN} = 3 \cdot I_{1N}^{2} \cdot R_{2} \cdot \left(\frac{1 - s_{N}}{s_{N}}\right) \qquad \Rightarrow \qquad R_{2}^{'} = \frac{P_{miN}}{3 \cdot I_{1N}^{2}} \cdot \left(\frac{s_{N}}{1 - s_{N}}\right) = \frac{15850}{3 \cdot 17.5^{2}} \cdot \left(\frac{0.046}{1 - 0.046}\right) = 0.83184 \Omega$$

Con lo que:

$$R_1 = 19,1615 - \frac{0,83184}{0,046} = 1,0779 \Omega$$

Como se desprecia la rama de vacío ($I_1 = I_2$), la relación entre las pérdidas en los bobinados del rotor y las pérdidas en los bobinados del estator es independiente del punto de funcionamiento e igual a:

$$\frac{P_{j2}}{P_{j1}} = \frac{3 \cdot I_1^2 \cdot R_2'}{3 \cdot I_1^2 \cdot R_1} = \frac{R_2'}{R_1} = \frac{0,83184}{1,0779} \qquad \Rightarrow \qquad \frac{P_{j2}}{P_{j1}} = 0,77$$

106.- Potencia transmitida del estator al rotor cuando el motor desarrolla su par nominal

$$P_{12N} = 3 \cdot I_{1N}^2 \cdot \frac{R_2'}{s_N} = 3 \cdot 17,5^2 \cdot \frac{0,83184}{0,046}$$
 \Rightarrow $P_{12N} = 16614,2 \text{ W}$

107.- Rendimiento eléctrico del rotor cuando el motor desarrolla su par máximo

$$\eta_{eC \max} = 1 - s_{C \max}$$

El deslizamiento al que se produce el par máximo es:

$$s_{C \max} = \frac{R_2'}{\sqrt{R_1^2 + (X_1 + X_2')^2}} = \frac{0,83184}{\sqrt{1,0779^2 + (10,3423)^2}} = 0,08$$

Por tanto:

$$\eta_{eC\,max} = 0.92 \ (pu)$$
 \Rightarrow $\eta_{eC\,max} = 92 \ \%$

108.- Valor mínimo de la reactancia que hay que conectar en serie con cada fase para que el motor cumpla la normativa relativa al arranque (ver Tabla XIX.a).

Potencia nominal del motor (en kW)	Valor máximo de I _{arranque} / I _{nominal} (intensidades de línea)		
de 0,75 a 1,5	4,5		
de 1,5 a 5	3		
de 5 a 15	2		
más de 15	1,5		

Tabla XIX.a

En la Tabla XIX.a se observa como la relación máxima entre la intensidad de arranque y la nominal debe ser 2. Por tanto, la reactancia que haga que esa relación sea 2 es el valor mínimo que hay que conectar en serie con cada fase.

En el arranque, como $n_2=0$, s=1. Por tanto:

$$I_{a} = \frac{V_{1}}{\sqrt{\left(R_{1} + R_{2}^{'}\right)^{2} + \left(X_{1} + X_{2}^{'} + X_{L}\right)^{2}}} \qquad \Rightarrow \qquad X_{L} = \sqrt{\left(\frac{V_{1}}{I_{a}}\right)^{2} - \left(R_{1} + R_{2}^{'}\right)^{2}} - \left(X_{1} + X_{2}^{'}\right)$$

Sustituyendo valores:

$$X_{L} = \sqrt{\left(\frac{660/\sqrt{3}}{2\cdot17.5}\right)^{2} - (1,0779 + 0,83184)^{2}} - (10,3423) \qquad \Rightarrow \qquad X_{L} = 0,376 \Omega$$