EXAM OF ADVANCED NUMERICAL METHODS, 5/22/2014. FULL RESOLUTION

Below is a full, mostly handwritten, answer to the exam. It is much more complete than what can be expected from the student in a time-constrained real exam situation. Far less complete answers are enough for the student to obtain all the points in each section.

The main aim of this detailed resolution is for future students to learn from it.

ANM, EXAM of $5 / 22 / 2014$
Part 1, Exeruze 1

$$
\begin{aligned}
& \text { February }=\text { mouth } 2 \Rightarrow f(2)=112, f^{\prime}(2)=0 \text { (max.) } \\
& \text { August }=\text { mouth } 8 \Rightarrow f(8)=49, f^{\prime}(8)=0 \text { (min.) } \\
& \text { May }=\text { mouth } 5 \Rightarrow f(5)=76
\end{aligned}
$$

with results rounded off to 6 decimals:
A) We need a table of divided differences (not fife differmes), regardless of whether the nodes are equally spaced or not, because we have data derivatives, so the polynomial will be an osculating one):

Table of $\frac{\text { divided differences }}{\text { with repetitions: }}$
$\frac{76-112}{5-2}=-12 \quad \frac{49-76}{8-5}=-9$; $\stackrel{O}{=}$ and $\stackrel{0}{=}$ because $f^{\prime}(2)=f^{\prime}(8)=0$.

$$
\begin{aligned}
& \frac{-12-0}{5-2}=-4 \quad \frac{-9--12}{8-2}=0.5 \quad \frac{0--9}{8-5}=3 \quad \frac{0.5--4}{8-2}=0.75 \\
& \frac{3-0.5}{8-2}=5 / 12 \quad \frac{5 / 12-0.75}{8-2}=-0.0 \hat{5}
\end{aligned}
$$

Interpolation polynomial (Newton representation):

$$
\begin{array}{r}
p_{4}(x)=112-4(x-2)^{2}+0.75(x-2)^{2}(x-5)-0.0 \hat{5}(x-2)^{2}(x-5)(x-8) \\
0_{-0.055556=-1 / 18}
\end{array}
$$

Evaluate is optimally for April, ie. for $x=4$:

To evaluate it "optimally" (from all 3 points of view, namely computations cost, roundoff error propagation and memory storage) we have to use the Hörver-like algorithm:

$$
\begin{aligned}
& p_{4}(x)=\{[-0.05(x-8)+0.75](x-5)-4\}(x-2)^{2}+112 \\
& P_{4}(4)=\{\underbrace{\underbrace{-0.0 \hat{5}(4-8)}_{-4.97 \hat{\imath}}+0.75](4-5)-4\}(4-2)^{2}+112}_{\underbrace{0.97 \hat{2}}_{-19 . \hat{8}}}= \\
& 92 . \hat{\lambda}=92.111111 \mathrm{~kW} \text { (again with } 6 \text { decimeds) }
\end{aligned}
$$

B) The easiest way to estimate the error mode in A) is to use the new datum, $f(3)=104$, to calculate a better
estimation of $f(4)$, i.e. $p_{5}(4)$. Since this is our best estimation of $f(4)$, our best estimation of the error made in A) must be $p_{5}(4)-p_{4}(4)$, which is the firm $h_{5}(x)$ that must be added to $p_{4}(x)$ in order to obtain $p_{s}(x)$, valuated at $x=4$.
To write $h_{S}(x)$, we add a new row to our previous table of divided difference (with pencit on p. ©; the numbers ane calculated exactly like the previous rows):

$$
\begin{aligned}
h_{5}(x) & =0.03 \hat{8}(x-2)^{2}(x-5)(x-8)^{2} \\
e_{4}(4) & =f(4)-p_{4}(4) \simeq p_{5}(4)-p_{4}(4)=h_{4}(4)= \\
& =\frac{7}{180} 4(-1)(-4)^{2}=-2.4 \hat{8}=\frac{-2.488889 \mathrm{~kW}}{\text { (with } 6 \text { decinds) }}
\end{aligned}
$$

It is important to know that, the ensor being negative, it is in excess, ie. we now estimate that $92 . \hat{1}$ wis too large by about 2.5 KW.

Part 1, Exerace 2

Continuity at $x=1$:

$$
\alpha+\gamma=-\alpha+\beta-5 \alpha+1 \Rightarrow 7 \alpha-\beta+\gamma=1
$$

Continuity of $S^{\prime}(x)$ at $x=1$:

$$
\begin{aligned}
& {\left[3 \alpha x^{2}+\gamma=-3 \alpha x^{2}+2 \beta x-5 \alpha\right]_{x=1}} \\
& 3 \alpha+\gamma=-3 \alpha+2 \beta-5 \alpha \Rightarrow 11 \alpha-2 \beta+\gamma=0
\end{aligned}
$$

Contimity of $s^{\prime \prime}(x)$ at $x=1$:

$$
\begin{aligned}
& {[6 \alpha x=-6 \alpha x+2 \beta]_{x}=1} \\
& 6 \alpha=-6 \alpha+2 \beta \quad \Rightarrow \quad 6 \alpha-\beta=0
\end{aligned}
$$

We have a 3×3 linear system. To solve "by trend" it is often convenient to use Gauss's method (or a variant):

$$
\left(\begin{array}{cccc}
7 & -1 & 1 & 1 \\
11 & -2 & 1 & 0 \\
6 & -1 & 0 & 0
\end{array}\right)\left\langle F_{2}-F_{1}\right\rangle\left(\begin{array}{cccc}
7 & -1 & 1 & 1 \\
4 & -1 & 0 & -1 \\
6 & -1 & 0 & 0
\end{array}\right)\left\langle F_{3}-F_{2}\right\rangle\left(\begin{array}{cccc}
7 & -1 & 1 & 1 \\
4 & -1 & 0 & -1 \\
2 & 0 & 0 & 1
\end{array}\right)
$$

Backward substitution:

$$
\begin{aligned}
& \text { Backward substitution: } \\
& \alpha=1 / 2 \rightarrow \beta=4 \alpha+1=3 \rightarrow \gamma=1+\beta-7 \alpha=\frac{2+6-7}{2}=1 / 2 .
\end{aligned}
$$

$$
\alpha=\frac{1}{2}, \beta=3, \gamma=\frac{1}{2}
$$

The justfration is obviously that a cube spline $s(x)$ must be $\sec C^{2}([a, b])$ as part of its defrriton ("class 2").
If the spline i) natural; it will satisfy g $S^{\prime \prime}(0)=S^{\prime \prime}(2)=0$:

$$
\begin{aligned}
& 6 \alpha x=3 x]_{x=0}=0 \text { ok } \\
& -6 \alpha x+2 \beta=-3 x+6]_{x=2}=-6+6=0 \text { ok }
\end{aligned}
$$

Therefore !... an be a natural spline.
Can it be a spline unth boundary conditoves?
Yes, if they concide with $S^{\prime}(0)$ and $s^{\prime}(2)$ respectively:

$$
\begin{aligned}
S^{\prime}(0) & \left.=3 \alpha x^{2}+\gamma\right]_{x=0}=\frac{1}{2} \\
S^{\prime}(2) & \left.=-3 \alpha x^{2}+2 \beta x-5 \alpha\right]_{x=2}=-3 \frac{1}{2} 4+2 \cdot 3 \cdot 2-5 \frac{1}{2}= \\
& =-6+12-\frac{5}{2}=\frac{12-5}{2}=\frac{7}{2}
\end{aligned}
$$

Therefore 1 can also be a spline with boundary conditions $f^{\prime}(0)=1 / 2, f^{\prime}(2)=7 / 2$.

Pant 1, Exenciu 3
1 - presenting the true nature of $f(x)$
The Range effect is the spurious oscillations that polysoourals of high degree (even moderate) ty prically exhibit with respect to the function they are interpolating. A well known example happens when $f(x)$ has the shape of a bell, hike $e^{-x^{2}}$ or maybe $\frac{1}{1+x^{2}}$. The aspect would be like:

$p(x)$ a see Classroom Notes for better limes.

This would be a typical aspect with equally spaced nodes. The effect can be (almost) minimized by choosing chebyster. nods rather than equally-graced one. That is becemise the Range effect tends to be stooge mean the endpoints of the intewal of interpolation $[a, b]$, and the Chebystev nodes are closer to one another near a and b; they are more spaced thowands the center, but there the Range effect tends to be weak. The aspect with Chebyr sher modes could be:
observe that the maximum error between nodes tends to be similar (and if would
 be the same, i.e achieved several tomes, if a certain derivative of $f(x)$ wee constant). It is mpportant to note 3 things:

- The Range effect is not the result of roundiff eros.

If is truncation errors $e(x)=f(x)-p(x)$ we are talking about, ie. with exact arithmetic,

- Osculation polynounid do not present a better behanor. The Hermite polynomial of a plane's wing profile could look something like this (erg.):
(see better for. in Classroom Motes).
- The Range effect is ore of the wain reasons why polynomials of high degree are very a rarely used. Even moderate degrees, hike 15 or 20 , should be avoided. This is also a good motivation to use splines, which miniunite oscillations under certain conditions (and way to measure them).
P.S. I forgot to add that $e(x)=f\left(x_{0}, x_{1}, \ldots, x_{n}, x\right] T(x)$ closely resembles the aspect of $\pi(x)$ if $f[\cdots]$, related with $y^{n+1}(\xi)$ by a factor $\frac{1}{(n+1)!}$, is approx. constant; so the cupect of $\pi(x)$ is the reason why osallations are stronger near a and b :

$$
\pi(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)
$$

Part 1, Erecorse 4

$$
N . B . L=\text { natural } \log =\log (x)
$$

in races
$I=\int_{2}^{3} \frac{L x}{\sqrt{(x-2)(3-x)}} d x$ looks like, after the linear change of variable mapping $[-1,1]$ onto $[2,3]$, we well have on integral of the Gouss-chebyster type, i.e. with some weight function $w(x)=\frac{1}{\sqrt{1-x^{2}}}$. (Even If we do not, we steel have to make the change of variable, because both limits of integration are fife; the "worst" thant can happen is that we have to integrate using Gauss -Legendre rules, which require either the use of tables or the calciumlation of Legendre poly nomials \rightarrow their roots $($ (nods $) \rightarrow$
\rightarrow the weight).

$$
\begin{aligned}
I x=\frac{d y}{2} & =\int_{-1}^{1} \frac{L(2.5+\xi / 2) \frac{d \xi}{2}}{\sqrt{(0.5+\xi / 2)(0.5-\xi / 2)}}=\int_{-1}^{1} \frac{L(2.5+\xi / 2)}{\sqrt{0.25-\xi^{2} / 4}} \frac{d \xi}{2} \\
& =\int_{-1}^{1} \frac{(L(2.5+\xi / 2)}{\sqrt{1-\xi^{2}}} d \xi f(\xi)
\end{aligned}=\int_{-1}^{1} \frac{f(x) d x}{\sqrt{1-x^{2}}}
$$

So yes, it's Gauss-Chebysher, which we can do without tally because the roots of the Chebystew polynounals (i.e. the wools) are easy to obtain, and the sum of the weights (cotppients of the quadrature pule) 1) alvergs π (and they are all equal, which reminds of...)

The plan is to use 1 mode, 2 mols, $3, \ldots$ etc. until the distance (difference in absolute value) between the last thur valves stained does not exceed 0.01\% of the last one (which is our best estination of I at that moment). This does not gravantee that the precision is better than 0.01%, but it is very bitely it will. We are therefore talking about a termination giterion of zerations, rather than a preasion (strictly speaking).
w. th one node $x_{0}=0, w_{0}=\pi \quad(n=0): \quad f(x)=L\left(2.5+\frac{3}{2}\right)$

$$
I \simeq Q_{0}=w_{0} f\left(x_{0}\right)=\pi L(2.5+0 / 2)=2.878612
$$

N.B. I will write all numbers rounded off to 6 decounds, knt the internal operations will be with double preasion arithmetic.

With $2 \operatorname{mods}(n=1)$:
weights $w_{0}=w_{1}=\pi / 2$

$$
\text { Nods } \pm \cos \frac{\pi}{4}= \pm \sqrt{2} / 2
$$

$$
I \simeq Q_{1}=w_{0} f\left(x_{0}\right)+w_{1} f\left(x_{1}\right)=\frac{\pi}{2} L\left(2.5+\frac{-\sqrt{2} / 2}{2}\right)+\frac{\pi}{2} L\left(2.5+\frac{\sqrt{2} / 2}{2}\right)=
$$

Termination criterion:

$$
=2.846878
$$

$$
\left|\frac{Q_{1}-Q_{0}}{Q_{1}}\right| \times 100=1.1147 \%>0.01 \% \Rightarrow \text { show must po on. }
$$

with 3 wads $(n=2)$:
heights $\omega_{i}=\pi / 3$

Nodes $\left\{\cos \left(\frac{\pi / 2}{3}\right), 0,-\cos \left(\frac{\pi / 2}{3}\right)\right\}=\{-0.866025,0,0.866025\}$

$$
Q_{2}=\frac{\pi}{3} L\left(2.5+\frac{-0.866}{2}\right)+\frac{\pi}{3} L\left(2.5+\frac{0}{2}\right)+\frac{\pi}{3} L\left(2.3+\frac{0.866}{2}\right)=
$$

$$
=Q_{2}=2.8467154243
$$

Termination criterion: $\left|\frac{Q_{2}-Q_{1}}{Q_{2}}\right| \times 100 \%=0.005707 \%<0.01 \%$

$$
\Rightarrow I \simeq Q_{2}=2.846715
$$

$N . B$. The exact value turns out to be $I=\pi L\left(\frac{5}{4}+\sqrt{\frac{3}{2}}\right)=$ $=2.8467143113428 \ldots$ So the error made with Q_{2} is $\simeq-1.113 \times 10^{-6}$ (ie. in excess).

Part 1, Exercise 5
This is basically exercise 35 of the Classroom Notes, thoroughly discussed then, with slightly different' phrasing of the questions. See lengthy discursion there,
A) Since $E=k \cdot f^{4}(\xi)$, it must be exact in $\mathbb{P}_{3}\left(1, x, x^{2}, x^{3}\right.$ all have zeno fourth derivative) but not in $\mathbb{P}_{4}\left(f=x^{4} \Rightarrow f^{4 \prime} \equiv 24 \neq 0 \Rightarrow\right.$ $E \neq 0 \Rightarrow Q$ inexact \Rightarrow the polynomial degree is exactly Exact in \mathbb{P}_{2} with 3 nodes \Rightarrow formula of interporlatory $N=3$
Inexact in $\mathbb{B S}_{S} \bar{w} 3$ nods \Rightarrow not a Gauss one.
The extra unit in polynomial degree (exact not only in \mathbb{P}_{2}, like any interpolating rule of 3 nodes "by construction", "ant also in \mathbb{P}_{3}) is typical, but not exclusive, of Newton-Cotes rules of an odd number of nodes. Not exdunve because any rule with 3 nodes symmetrically located on both sods of midpoint $m=(a+b) / 2$ will be exact in \mathbb{P}_{3} (and even if the nodes are not symmetrical, but such that $\int_{a}^{b} \pi(x) d x=0$). There are infritely, many rules of 3 nods that are exact in \mathbb{R}_{3} that are not Newton-Cotes ones.

Another clue is that h appears in the term E, and h is typically the distance between nodes in Newton-Cote, rules. So it looker lithe a $\mathrm{N}-\mathrm{C}$ rule. However, we are told to "reason
out" according to the "properties" (fundamental ones) of the rule. Saying " h appears, so it o $N-C$ " is reasoning according to a notation. And not even a universal one at that, since for many non -N-C rules, like Gauss over, h can be the total width $h=b-a$.

Therefore we can only be sure that it is a non-Gauss interpolatory rule; possibly (but not necessarily) a Nenton-Cotes one.
If the rule is indeed a $N-C$ one, it must be the open one, because the constant K in the error term $\left(14 h^{5 / 45)}\right.$ is postie; closed rules have a negative constant in the error term. For instance, the trapezoidal rule (closed) hes error in excess (i.e. negative) for functions that are concave upwards (positive $f^{\prime \prime}$), hence $K<0$. $f(x)$ Therefore it looks like the open Newton-Cots rule of 3 nodes. But I cannot assure it, at least without calculating (4) $\quad E<0$ its error term E and seeing if it is precisely $14 \mathrm{~h}^{5} / 45 \times f^{4}(\xi)$. (And, strictly speaking, not even then, because the meaniry of h 1) not specified.)
B) To obtain the coeffrients. I need the positions of the node, so

$$
\begin{aligned}
& \text { I will assume the cull is the open } N-C \text { ore: } \\
& \text { Exact in } 1 \rightarrow \int_{-2 h}^{2 h} 1 d x=4 h=A_{0} 1+A_{1} 1+A_{21} \\
& \Rightarrow A_{0}+A_{1}+A_{2}=4 \mathrm{~h} \\
& \text { Exact in } x \rightarrow \int_{-2 h}^{2 h} x d x=0=A_{0}(h)+A_{1} b+A_{2} h \Rightarrow \frac{A_{0}=A_{2}}{h} \\
& \text { Exact in } x^{2} \rightarrow \int_{-2 h^{2}}^{2 h} d x=2 \frac{(2 h)^{3}}{3}=A_{0}(h)^{2}-A_{1} 0^{2}+A_{2} h^{2}=2 A_{0} h^{2}=\frac{16 h^{3}}{3} \\
& \Rightarrow \quad A_{0}=\frac{8 h}{3}=A_{2} ; \quad A_{1}=4 h-2 A_{0}=\frac{12 h}{3}-\frac{16 h}{3}=\frac{-4 h}{3} \\
& A_{1}=\frac{-4 h}{3}
\end{aligned}
$$

Even of it is not asked, I mill calmbate the error term E with a twofold purpose: check that I got my coeffivents night, and that the rule was indeed the open N-C one (posisbly, anyway) i

$$
\begin{aligned}
& \int_{-2 h}^{2 h} x^{4} d x=2 \frac{(2 h)^{5}}{5}=\frac{64 h^{5}}{5}=\frac{8 h}{3}(-h)^{4}+\frac{-4 h}{3} 0^{4}+\frac{8 h}{3} h^{4}+k \cdot f^{4}(\xi) \\
& f=x^{4} \rightarrow f^{\prime \prime}=4!=24 \Rightarrow \frac{64 h^{5}}{5}=\frac{16 h^{5}}{3}+k \cdot 24 \Rightarrow K=\frac{h^{5}}{24}\left(\frac{64}{5}-\frac{16}{3}\right)= \\
& =\frac{h^{5}}{24} \times \frac{192-80}{15}=\frac{h^{5}}{344_{3}} \cdot \frac{11214}{15}=\frac{14 h^{5}}{45} \frac{0 k}{}
\end{aligned}
$$

P.S. In prinaciele ane could look for a different rule that looks alike $\left(E=14 h^{5} / 45 \times f^{4 \prime}(3)\right)$ ever if $h=b=a$, for instance.

Part 2, Exercise 1
I'll call $x=y_{1}, y=y_{2}$ so I can write $y=\binom{y_{1}}{y_{2}}$.
Then: $\underline{y}^{\prime}=\underbrace{\left(\begin{array}{ll}t & 1 \\ 1 & t\end{array}\right)}_{J=J(t)} \underline{y}=f(t, y) \quad$ (hnear rystem) \quad (systen of $O D E_{5}$)
Inital Conditiras: $\quad y(0)=\binom{1}{-1} \Rightarrow\left\{\begin{array}{l}t_{0}=0 \\ y_{0}=\binom{1}{-1}\end{array}\right.$
Modifred Euler ミModpoint, with advance formula:

$$
\left\{\begin{array}{l}
k_{1}=f\left(t_{k}, y_{k}\right) h_{k} \\
k_{2}=f\left(t_{k}+\frac{h_{k}}{2}, y_{k}+\frac{k_{1}}{2}\right) h_{k} \\
y_{x+1}=y_{k}+k_{2}
\end{array} \quad \text { with } h=0.1\right.
$$

Frrst step: $\quad k_{1}=f\left(0,\binom{1}{-1}\right) h=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{1}{-1} 0.1=\binom{-0.1}{0.1}$

$$
\begin{gathered}
\underline{K_{2}}=\underline{f}\left(0.05,\binom{1}{-1}+\binom{-0.05}{0.05}\right) \cdot 0.1=\left(\begin{array}{cc}
0.05 & 1 \\
1 & 0.05
\end{array}\right)\binom{0.95}{-0.95}=\binom{-0.09025}{0.09025} \\
\underline{y_{1}}=\underline{y_{0}}+k_{2}=\binom{1}{-1}+\binom{-0.09025}{0.09025}=\binom{0.90975}{-0.90975} \\
\Rightarrow \begin{array}{l}
x(0.1) \simeq 0.90975 \\
y(0.1) \simeq-0.90975
\end{array}
\end{gathered}
$$

Second step: aburning notakion by "overwniting" k_{1}, k_{2} :

$$
k_{1}=f\left(0.1,\binom{0.90975}{-0.90975}\right) \cdot 0.1=\left(\begin{array}{cc}
0.1 & 1 \\
1 & 0.1
\end{array}\right)\binom{0.90975}{-0.90975} \cdot 0.1=\binom{-0.0818775}{0.0818775}
$$

$$
\begin{aligned}
& \underline{K}_{2}=f\left(0.15,\binom{0.90975}{-0.90775}+\frac{1}{2}\binom{-0.0818755}{0.0818775}\right) \times 0.1= \\
&=\left(\begin{array}{cc}
0.15 & 1 \\
1 & 0.15
\end{array}\right)\binom{0.86881125}{-0.8688125} \times 0.1=\binom{-0.0738490}{0.0738490} \\
& \underline{y_{2}}=y_{1}+\underline{k}_{2}=\binom{0.90975}{-0.90975}+\binom{-0.073879}{0.073849}=\binom{0.83590104375}{-0.83590104375} \\
& \text { with 6 signyfcant dagrts: } \begin{array}{l}
x(0.2) \simeq 0.835901 \\
y(0.2) \simeq-0.835901
\end{array}
\end{aligned}
$$

Paut 2, Exterise 2

$$
y_{n+1}=y_{n-1}+\frac{h}{3}\left(7 f_{n}-2 f_{n-1}+f_{n-2}\right)
$$

... already passed to the compuiter.

Part 2, Exercise 2

This is again the advance formula: $\quad y_{n+1}-y_{n-1}=\frac{h}{3}\left(7 f_{n}-2 f_{n-1}+f_{n-2}\right)$
To study the convergence and the order of convergence, we will apply the following "recipe":
First write the multistep linear method in its general form:

$$
\begin{equation*}
y_{n+k}=-\sum_{j=0}^{k-1} \alpha_{j} y_{n+j}+h \sum_{j=0}^{k} \beta_{j} f_{n+j} \quad(n=0, \ldots, N-k) \tag{2}
\end{equation*}
$$

Then calculate its first characteristic polynomial (with $\alpha_{k}=1$):
$\begin{array}{ll} & \rho(z)=\sum_{j=0}^{k} \alpha_{j} z^{j} \\ \text { and its 2nd characteristic polynomial: } & \sigma(z)=\sum_{j=0}^{k} \beta_{j} z^{j}\end{array}$
The method is consistent iff ${ }^{1}$

$$
\rho(1)=0 \text { and } \rho^{\prime}(1)=\sigma(1) .
$$

The method is stable ${ }^{2}$ iff the roots z_{i} of $\rho(z)$ verify $\left\|_{i}\right\| \leq 1$ on the complex plane, and the ones with modulus 1 are simple roots.
The method is convergent iff it is consistent and stable; and its order of convergence is p iff $\rho(1)=0$ (already checked for consistency) and:

$$
\frac{1}{m} \sum_{j=0}^{k} j^{m} \alpha_{j}=\sum_{j=0}^{k} j^{m-1} \beta_{j} \quad(m=1,2, \ldots, p)
$$

We must first identify (1) and (2) so as to obtain k and the coefficients α_{j}, β_{j}.
Let us start with k. The points used run from t_{n-2} to t_{n+1}, so they are 4 points, hence $k=3$. You can also see that in that the maximum difference of indices in (1) is $(n+1)-(n-2)=3$, while in (2) it is $(n+k)-(n+0)=k$; identifying both we get again $k=3$.
Substituting $k=3$ in (2) leaves y_{n+3} on the left-hand side, so I will add two units to every index in (1) so that it is easier to identify coefficients. I will also isolate y_{n+3} :

$$
y_{n+3}=y_{n+1}+\frac{h}{3}\left(7 f_{n+2}-2 f_{n+1}+f_{n}\right)
$$

If we now expand (2) for $k=3$:

$$
y_{n+3}=\left(-\alpha_{0} y_{n}-\alpha_{1} y_{n+1}-\alpha_{2} y_{n+2}\right)+h\left(\beta_{0} f_{n}+\beta_{1} f_{n+1}+\beta_{2} f_{n+2}+\beta_{3} f_{n+3}\right)
$$

Identifying coefficients between these two expressions it is now immediate to obtain:

$$
\alpha_{0}=0 ; \quad \alpha_{1}=-1 ; \quad \alpha_{2}=0 ; \quad\left(\alpha_{3}=1\right) ; \quad \beta_{0}=\frac{1}{3}, \quad \beta_{1}=\frac{-2}{3}, \quad \beta_{2}=\frac{7}{3}, \quad \beta_{3}=0
$$

The characteristic polynomials are then:

$$
\rho(z)=\sum_{j=0}^{k} \alpha_{j} z^{j}=\underline{-z+z^{3}} ; \quad \sigma(z)=\sum_{j=0}^{k} \beta_{j} z^{j}=\underline{\frac{1}{3}+\frac{-2}{3} z+\frac{7}{3} z^{2}}
$$

[^0]Check for consistency: $\quad \rho(z)=-z+z^{3} \Rightarrow \rho(1)=-1+1^{3}=0$ ok

$$
\rho^{\prime}(z)=-1+3 z^{2} \Rightarrow \rho^{\prime}(1)=-1+3=2 ; \quad \sigma(1)=\frac{1}{3}+\frac{-2}{3}+\frac{7}{3}=\frac{6}{3}=2=\rho^{\prime}(1) \quad \text { ok }
$$

Check for stability:

$$
\rho(z)=-z+z^{3}=z\left(-1+z^{2}\right)=0 \Rightarrow\left\{\begin{array}{l}
z=0 \text { (with modulus }<1) \\
z= \pm 1 \text { (with modulus 1, simple roots) }
\end{array} \quad\right. \text { ok }
$$

So the method is also stable. Since it is consistent and stable, it is convergent ${ }^{3}$. Let us calculate the order of convergence. We already checked that $\rho(1)=0$, so:

For $m=1$:

$$
\left.\begin{array}{l}
\frac{1}{1}\left(0^{1} \alpha_{0}+1^{1} \alpha_{1}+2^{1} \alpha_{2}+3^{1} \alpha_{3}\right)=-1+3=2 \\
\beta_{0}+\beta_{1}+\beta_{2}+\beta_{3}=\frac{1}{3}+\frac{-2}{3}+\frac{7}{3}+0=\frac{6}{3}=2
\end{array}\right\} \text { equal } \Rightarrow \text { ok }
$$

Note that the coefficient of β_{0} would be 0^{0} in the "recipe", which is indeterminate; but the coefficients of β_{1}, β_{2} and β_{3} in the same expression are all 1 , so it looks natural that the coefficient of β_{0} should also be 1 ; besides, we are already familiar with that expression, which is $\sigma(1)$, calculated above. Making the coefficient of β_{0} equal to 1 is actually the right way to apply the "recipe" (and the only way for both values to be equal).

For $m=2$:

$$
\left.\frac{1}{2}\left(0^{2} \alpha_{0}+1^{2} \alpha_{1}+2^{2} \alpha_{2}+3^{2} \alpha_{3}\right)=\frac{1}{2}(-1+9)=4\right\} \text { equal } \Rightarrow \mathrm{ok}
$$

For $m=3$:

$$
\begin{gathered}
0 \beta_{0}+1 \beta_{1}+2 \beta_{2}+3 \beta_{3}=1 \frac{-2}{3}+2 \frac{7}{3}=\frac{-2+14}{3}=4 \\
\frac{1}{3}\left(0^{3} \alpha_{0}+1^{3} \alpha_{1}+2^{3} \alpha_{2}+3^{3} \alpha_{3}\right)=\frac{1}{3}(-1+27)=\frac{26}{3}
\end{gathered}
$$

$$
\left.0^{2} \beta_{0}+1^{2} \beta_{1}+2^{2} \beta_{2}+3^{2} \beta_{3}=\frac{-2}{3}+4 \frac{7}{3}=\frac{-2+28}{3}=\frac{26}{3}\right\}
$$

$$
\text { equal } \Rightarrow \text { ok }
$$

For $m=4$:

$$
\left.\frac{1}{4}\left(0^{4} \alpha_{0}+1^{4} \alpha_{1}+2^{4} \alpha_{2}+3^{4} \alpha_{3}\right)=\frac{1}{4}(-1+81)=20\right)
$$

different

$$
\left.0^{3} \beta_{0}+1^{3} \beta_{1}+2^{3} \beta_{2}+3^{3} \beta_{3}=\frac{-2}{3}+8 \frac{7}{3}=\frac{-2+56}{3}=\frac{54}{3}\right\}
$$

Therefore

the order of the method is $p=3$.
The method is explicit, because in (1) the unknown y_{n+1}, when isolated, is written explicitly in terms of already-known values (the points at t_{n}, t_{n-1} and t_{n-2} are all known by the time one tries to calculate the one at t_{n+1}). In other words, y_{n+1} does not appear on the right-hand side of (1), so one does not need to iterate in order to apply the advance formula. The computational cost is therefore small (basically one evaluation of $f(t, y)$ per step).

[^1]The method is not of Adams-Moulton because AM methods are implicit; but neither is it of AdamsBashforth, which are explicit, because in those methods you have y_{n}, rather than y_{n-1}, on the righthand side of the advance formula (Adams-Bashforth methods integrate the interpolation polynomial $p(t)$ of $f_{i}=f\left(t_{i} y_{i}\right)$ at $i=n, n-1, n-2, \ldots$ between t_{n} and t_{n+1}, and add the value of that integral to y_{n}). So it is an explicit multistep linear method of some other type than AB . Specifically, this method integrates $p(t)$ between t_{n-p} and t_{n+1} for $p=1$ (and that's why it starts $y_{n+1}=y_{n-1}+\ldots$); these methods are called Nyström methods.

Finally, by definition, the number of steps is 3 because that is the number of known points used (namely the points at t_{n-2}, t_{n-1} and t_{n}; even if it were an implicit method, by definition, they number that determines the number of steps of the method is the number of "already calculated" points used on the right-hand side of the advance formula).

Part 2, Exercise 3
First I write the Taylor series expansions of interest. With a little bit of foresight I realize Taylor remainders of order 3 . will work just fine (otherwise write suppennom points and truncate later):

$$
\begin{aligned}
& f(z+2 h)=f(z)+f^{\prime}(z) 2 h+\frac{f^{\prime \prime}(z)}{2!}(2 h)^{2}+\frac{f^{\prime \prime \prime}\left(\frac{(3)}{}\right)}{3!}(2 h)^{3} \\
& f(z-h)=f(z)-f^{\prime}(z) h+\frac{f^{\prime \prime}(z)}{2!} h^{2}-\frac{f^{\prime \prime \prime}\left(\xi_{2}\right)}{3!} h^{3}
\end{aligned}
$$

for some $\xi_{1} \in(z, z+2 h), \xi_{2} \in(z-h, z)$, and assuming that $f \in C^{3}([z-h, z+z h])$ (or at least that $j^{\prime \prime}$ exists there and is bounded). we are requested to achieve the highest possible order of comergence, so I will tiny to get rid 'of the terms of order 2. I can achieve just that by multiplying the second by (-4) and addie term to term.

$$
\begin{aligned}
& \text { adding termbterm: } \\
& f(z+2 h)-4 f(z-h)=-3 f(z)+f^{\prime}(z) 6 h+6+\frac{8 f^{\prime \prime}\left(\xi_{1}\right)+4 f^{\prime \prime \prime}\left(\xi_{2}\right)}{3!} h^{3}, h^{\prime}(z):
\end{aligned}
$$

Isolating $f^{\prime}(z)$:

$$
\begin{aligned}
& \text { Isolating } f^{\prime}(z): \\
& f^{\prime}(z)=\frac{f^{\prime}(z+2 h)+3 f(z)-4 f(z-h)}{6 h}-\frac{2 f^{\prime \prime \prime}\left(\xi_{1}\right)+f^{\prime \prime \prime}\left(\xi_{2}\right)}{9} h^{2} \\
& \Delta s h \rightarrow 0^{+} \xi \rightarrow 0^{+} \text {and } \xi_{1} \rightarrow 0^{-} ; \text {if } f \in C^{3} \text { near } z \text {, the lari }
\end{aligned}
$$

As $h \rightarrow 0^{+}, \xi_{1} \rightarrow 0^{+}$and $y_{2} \rightarrow 0^{-}$; if $f \in C^{3}$ near z, the last numerafor will tend to $3 f^{\prime \prime \prime}(z)$ and actually be equal to $3 f^{\prime \prime \prime}(\xi)$ for some ξ near z. That's essentially correct, but for a formal proof consider the function $g(x)=3 f^{\prime \prime \prime}(x) \in C\left(\left[\xi_{1}, \xi_{2}\right]\right)$. The value $2 f^{\prime \prime \prime}\left(\xi_{1}\right)+f^{\prime \prime \prime}\left(\xi_{2}\right)$ is obviously. intermediate between $g\left(\xi_{1}\right)$ and $g\left(\xi_{2}\right)$; therefore, by virtue of Weierstrass's Intermediate Value Theorem, there must exist at least one $\xi \in\left[\xi_{1}, \xi_{2}\right]$ such that $g(\xi)=3 f^{\prime \prime \prime}(\xi)=2 f^{\prime \prime \prime}\left(\xi_{1}\right)+f^{\prime \prime \prime}\left(\xi_{2}\right), \Omega_{u} s_{s} i_{-}$

$$
f^{\prime}(z)=\frac{f^{\prime}(z+2 h)+3 f(z)-4 f(z-z)}{6 h}+\underbrace{\frac{-f^{\prime \prime \prime}(\xi)}{3} h^{2}}_{E=0\left(h^{2}\right)}
$$

That was done with an ad-hoc manipulation of the
Taylor series expargoons of interest, Che can also obtain the same result in a more systematic way, ie, applying the "theory". Let's remember it:

Taylor expansion of f at $x_{i}=z+h_{i}$ around z :

$$
f\left(x_{i}\right)=f(z)+f^{\prime}(z) h_{i}+\frac{f^{\prime \prime}(z)}{2!} h_{i}^{2}+\cdots+\frac{f^{k}(z)}{k!} h_{i}^{k}+\cdots+\frac{f^{n}(z)}{n!} h_{i}^{n}+\frac{f^{n n k}(z)}{(n+1)!} h_{i}^{n}+\cdots
$$

That's assuming:

- $f \in C^{m+1}([a, b])$ (or at least $f^{m+1 y} \exists$ and

$$
\cdots+\frac{f^{m}(z)}{m!} h_{i}^{m}+\frac{f^{m+1}\left(\xi_{i}\right)}{(m+1)!} h_{i}^{m+1}
$$

bounded in $(a, b]$) for the expansion to be valid;

- $n \geqslant k$ (so we have enough points to approximate $f^{k}(z)$; in our case, $k=1$,
- $m \geqslant n$ (for the valid series expansion to be long enough 2).

Like always, $f^{k}(z)=D+E=\sum_{i=0}^{n} A_{i} f\left(x_{i}\right)+E$. Substituting:

$$
\begin{align*}
& f^{(k)}(z)=\sum_{i=0}^{n} A_{i}\left[f(z) \cdot f^{\prime}(z) h_{i}+\frac{f^{\prime \prime}(z)}{2!} h_{i}^{2}+\cdots\right]+E= \\
& =(\underbrace{\sum_{i=0}^{n} A_{i}}_{*_{0}}) f(z)+(\underbrace{\sum_{i=0}^{n} A_{i} h_{i}}_{\hat{N}_{0}}) f^{\prime}(z)+(\underbrace{\frac{1}{2!} \sum_{i=0}^{n} A_{i} h_{i}^{2}}_{=0}) f^{\prime \prime}(z)+\cdots+(\underbrace{\frac{1}{k!} \sum_{i=0}^{n} A_{i} h_{i}^{k}}_{\underbrace{}_{1}}) f^{k}(z)+\cdots \\
& +(\underbrace{\left(\frac{1}{n!} \sum_{i=0}^{n} A_{i} h_{i}^{n}\right.}_{=0}) f^{n}(z)+\left(\frac{1}{(n+1)!} \sum_{i=0}^{n} A_{i} h_{i}^{n+1}\right) f^{n+k}(z)+\cdots+\left(\frac{1}{m!} \sum_{r=0}^{n} A_{i} h_{i}^{m}\right) f^{m /(z)}+ \\
& +\frac{1}{(n+1)!}\left(\sum_{i=0}^{n} A_{i} h_{i}^{m+1} f^{m+1}\left(\xi_{i}\right)\right)+E \tag{*}
\end{align*}
$$

If we impose the
conditions indicated $=0,=0, \cdots,=1, \cdots,=0$ above, then everything cancels out except the la it terms (*), which must be then 0 . From $(*)=0$ we can isolate E and get the expression of the ever term (applying Weierstrass's Intermediate Value Theorem in the process). The conditions $=0, \ldots,=1, \ldots,=0$ represent an $(n+1) \times(n+1)$ set of linear equations in A_{i}; soloing it we obtain the coeffrients $A_{0}, A_{1}, \ldots, A_{n}$.

In our case: $k=1, n=2, m=2$ (we assume $f \in C^{3}([a, b])$), and $h_{0}=-h, h_{1}=0, h_{2}=2 h$. Substituting:

$$
\begin{aligned}
& \left\{\begin{array}{l}
A_{0}+A_{1}+A_{2}=0 \\
A_{0}(-h)+A_{1} \cdot 0+A_{2}(2 h)=1 \Rightarrow-A_{0}+2 A_{2}=1 / h \\
A_{0}(-h)^{2}+A_{1} \cdot 0^{2}+A_{2}(2 h)^{2}=0 \Rightarrow A_{0}+4 A_{2}=0
\end{array}\right\} \begin{array}{l}
(+) \\
\Rightarrow 6 A_{2}=1 / h \\
A_{2}=\frac{1}{6 h} \rightarrow
\end{array} \\
& A_{0}=-4 A_{2}=\frac{-4}{6 h} \rightarrow A_{1}=-A_{0}-A_{2}=\frac{4}{6 h}-\frac{1}{6 h}=\frac{3}{6 h} \\
& \Rightarrow D=\frac{-4 f(z-h)+3 f(z)+f(z+2 h)}{6 h} \text { hie before. }
\end{aligned}
$$

As for the enos term E, let's substitute into $(*)=0$. Only the last term (s) remain:

$$
\begin{aligned}
& \frac{1}{3!}\left(A_{0}(-h)^{3} f^{\prime \prime \prime}\left(\xi_{0}\right)+0+A_{2}(2 h)^{3} f^{\prime \prime \prime}\left(\xi_{2}\right)\right)+E=0 \Rightarrow \\
& E=\frac{-1}{3!}\left(\frac{+4}{6 h} h^{3} f^{\prime \prime \prime}\left(\xi_{0}\right)+\frac{1}{6 h}(2 h)^{3} f^{\prime \prime \prime}\left(\xi_{2}\right)\right) \text { where } \begin{aligned}
& \xi_{0} \in(z-h, z) \\
& \xi_{2} \in(z, z+2 h) .
\end{aligned}
\end{aligned}
$$

Therefore $E=\frac{-f^{\prime \prime \prime}\left(\xi_{0}\right)-2 f^{\prime \prime \prime}\left(\xi_{2}\right)}{9} h^{2}$ and, by a reasoning similar to the one above, $E=\frac{-f^{\prime \prime \prime}(\xi)}{3} h^{2}$ for some ξ near z. P.S. If it was not obvious enough before:

$$
\begin{array}{ll}
\text { If } f^{\prime \prime \prime}\left(\xi_{0}\right)=f^{\prime \prime \prime}\left(\xi_{2}\right): & 3 f^{\prime \prime \prime}\left(\xi_{0}\right)=f^{\prime \prime \prime}\left(\xi_{0}\right)+2 f^{\prime \prime \prime}\left(\xi_{2}\right)=3 f^{\prime \prime \prime}\left(\xi_{2}\right) \\
\text { If } f^{\prime \prime \prime}\left(\xi_{0}\right)<f^{\prime \prime \prime}\left(\xi_{2}\right): & 3 f^{\prime \prime \prime}\left(\xi_{0}\right)<f^{\prime \prime \prime}\left(\xi_{0}\right)+2 f^{\prime \prime \prime}\left(\xi_{0}\right)<3 f^{\prime \prime \prime}\left(\xi_{2}\right) \\
\text { If } f^{\prime \prime \prime}\left(\xi_{0}\right)>f^{\prime \prime \prime}\left(\xi_{2}\right): & 3 f^{\prime \prime \prime}\left(\xi_{0}\right)>f^{\prime \prime \prime}\left(\xi_{0}\right)+2 f^{\prime \prime \prime}\left(\xi_{2}\right)>3 f^{\prime \prime \prime}\left(\xi_{2}\right) \\
& f^{\prime \prime \prime}\left(\xi_{1}\right)+2 f^{\prime \prime \prime}\left(\xi_{1}\right) \text { is an intermediate value o }
\end{array}
$$

In all three cases, $f^{\prime \prime \prime}\left(\xi_{0}\right)+2 f^{\prime \prime \prime}\left(\xi_{1}\right)$ is an intermediate value of $3 y^{\prime \prime \prime} \in C\left(\left[\xi_{0}, \xi_{2}\right]\right)$ between its calves on ξ_{0} and on ξ_{2}, so one can apply Weierstrass's Intermediate Value Theorem and conclude that $\exists \xi \in\left[\xi_{0}, \xi 2\right] \subset[z-h, z+2 h] / 3 f^{\prime \prime \prime}(\xi)=f^{\prime \prime \prime}\left(\xi_{0}\right)+2 f^{\prime \prime \prime}\left(\xi_{2}\right)$.
P.S.2 - of course there's also the possibility to develop the "systematic theory" just for the problem at hand, namely use $k=1, n=m=2$ from the very beginning, truncating the Taylor expansions at order 3. You should be able to do that yourself.

[^0]: ${ }^{1}$ We use "iff" meaning "if and only if".
 ${ }^{2}$ Stability of the method itself, regardless of the problem it is solving. A stable method can work unstably (i.e. it can propagate local errors in an amplified manner, typically rendering outrageous results) if the step size h is larger than some threshold h_{t}. The methods that never become unstable when applied on stable ODEs or systems thereof are called unconditionally stable or A-stable, and are the methods whose absolute stability region covers the entire left complex half plane.

[^1]: ${ }^{3}$ Consistency guarantees that each local error (the error attributable to each single step) tends to zero fast enough as the step size h tends to zero (namely, faster than h). Stability guarantees that the propagation of those local errors can occur in a damped, rather than amplified, manner, i.e., that the global error E at the end of a time interval can be less than the sum of all the local errors made in the interval. When actually applying a method to solve a specific problem, there exists an "amplification factor" that governs the propagation, or composition, of the local errors to form the global error; and for the method to work stably, that amplification factor must be less than 1 in absolute value. That depends not only on the method, but also on the problem being solved and on the step size h used to solve it with that method. Here we are talking all the time about truncation errors, i.e., with exact arithmetic.

