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ADVANCED NUMERICAL METHODS 
DEGREE IN INDUSTRIAL TECHNOLOGY ENGINEERING 

JULY 5, 2014 – RESOLUTION 

1.- 
a) Since the nodes are not evenly-spaced, we must use divided differences: 

 i       xi    fi    fi1     fi2      fi3         fi4   fi5 
 0        0     0                                           
 1        1     1      1                                    
 2      1.5     0     -2      -2                            
 3       11     0      0     0.2      0.2                   
 4     11.5     1      2     0.2        0     -0.0174       
 5     12.5     0     -1      -2     -0.2     -0.0174     0 

All numbers have been calculated with the usual formula, fi,k = (fi,k−1
 − fi−1,k−1) / (xi

 − xi−k), with 
3-significant-digit arithmetic throughout. The operations are trivial, but here they are anyway: 

 f1,1 = (1−0) / (1−0) = 1 
 f2,1 = (0−1) / (1.5−1) = −2 
 f3,1 = (0−0) / (11−1.5) = 0 
 f4,1 = (1−0) / (11.5−11) = 2 
 f5,1 = (0−1) / (12.5−11.5) = −1 
 f2,2 = (−2−1) / (1.5−0) = −2 
 f2,3 = (0 − −2) / (11−1) = 0.2 
 f2,4 = (2−0) / (11.5−1.5) = 0.2 
 f2,5 = (−1−2) / (12.5−11) = −2 
 f3,3 = (0.2 − −2) / (11−0) = 0.2 
 f3,4 = (0.2−0.2) / (11.5−1) = 0 
 f3,5 = (−2−0.2) / (12.5−1.5) = −0.2 
 f4,4 = (0−0.2) / (11.5−0) = −0.0173913 ≈ −0.0174 
 f4,5 = (−0.2−0) / (12.5−1) = −0.0173913 ≈ −0.0174 
 f5,5 = (−0.0174 − −0.0174) / (12.5−0) = 0 

b) We can readily write the Newton representation of the interpolation polynomial p5(x) 
from the numbers in the table of divided differences:  
  p5(x) = x − 2x(x−1) + 0.2x(x−1)(x−1.5) − 0.0174x(x−1)(x−1.5)(x−11) 

The interpolation polynomial p5(x) is of degree 4 (because the last divided difference turns out 
to be exactly 0). It is called p5(x) because it is the only polynomial of degree ≤ 5 that satisfies 
the interpolation data (which, by the way, means that no polynomial of degree 5 does). 
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Of course there exist infinitely many other polynomials that also satisfy the interpolation data. 
You can simply add any more points arbitrarily and calculate the corresponding unique 
interpolation polynomial. However, as said above, all of them must be of degree 6 or higher. 

c) The Hörner algorithm (and its variant to evaluate polynomials written in its Newton 
representation) is optimal in the sense of its computational cost (you have to calculate fewer 
products than with any other method, like direct evaluation for instance) and its numerical 
stability (the roundoff errors propagate with less amplification than with other methods). 

d) Using the Hörner variant for Newton polynomials, and with 3-significant-digit arithmetic 
throughout:  
  ( ){ }5 ( ) 0.0174( 11) 0.2 ( 1.5) 2 ( 1) 1p x x x x x= − − + − − − +⎡ ⎤⎣ ⎦  

  5

0.0731

0.273

1.45

0.550

3.19

2.19

(6.8) 0.0174( 4.2) 0.2 (5.3) 2 (5.8) 1 6.8 14.9p

−

−

−

⎧ ⎫= ⎡ − − + − ⎤ + = −⎛ ⎞
⎪ ⎪⎢ ⎥⎜ ⎟
⎜ ⎟⎪ ⎪⎢ ⎥⎝ ⎠⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥⎪ ⎪⎣ ⎦

⎪ ⎪
⎪ ⎪⎩ ⎭

 

e) Since f0
 = f2

 = f3
 = f5

 = 0, only the second and the second-last base functions, L1(x) and 
L4(x), appear in p5(x):  

  
5 1 1 4 4

( 0)( 1.5)( 11)( 11.5)( 12.5)( ) ( ) ( ) 1
(1 0)(1 1.5)(1 11)(1 11.5)(1 12.5)

( 0)( 1)( 1.5)( 11)( 12.5)1
(11.5 0)(11.5 1)(11.5 1.5)(11.5 11)(11.5 12.5)

x x x x xp x f L x f L x

x x x x x

− − − − −
= + = +

− − − − −
− − − − −

+
− − − − −

 

  5
( 1.5)( 11)( 11.5)( 12.5) ( 1)( 1.5)( 11)( 12.5)( )
( 0.5) ( 10) ( 10.5) ( 11.5) 11.5 10.5 10 0.5 ( 1)

x x x x x x x x x xp x − − − − − − − −
= +

− × − × − × − × × × × −
 

Let us now evaluate it at x = 6.8 with 3-significant-digit arithmetic throughout. We will 
perform the operations in the order in which they appear: 
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4050

710

151 209

36.0 39.4

5

5.00

52.5

604

6.8 5.3 ( 4.2) ( 4.7) ( 5.7) 6.8 5.8 5.3 ( 4.2(6.8)
( 0.5) ( 10) ( 10.5) ( 11.5)

p

−

−

−

× × − × − × − × × × −
= +

− × − × − × −

5005

878

121

1210

605

) ( 5.7)
11.5 10.5 10 0.5 ( 1)

4050 5005 6.71 8.27 15.0
604 605

−

−
=

× × × × −

−
= + = − − = −

−

 

This last value is much closer to the exact one, −15.0052..., than the −14.9 that we obtained 
applying the Hörner-like algorithm to the Newton representation of p5(x). Of course with 
exact arithmetic both ways would result in the same, exact value, because p5(x) is unique (you 
can just write it in different forms), so this difference is necessarily the result of the 
propagation of roundoff errors when using 3-significant-digit arithmetic. 

It is a little surprising that the final roundoff error turned out larger with the Hörner variant 
(which has good numerical stability) than when using the expression of p5(x) in terms of 
Lagrange base functions (which is known to be numerically unstable, as we have seen in the 
subject’s theory). However, in specific cases, this can happen because of positive and 
negative roundoff error cancellation. It will probably turn out that with higher-precision 
arithmetic in both cases the roundoff error eventually becomes smaller using the Hörner 
variant –you can try it if you want–. 

In fact, the final roundoff error of the Hörner variant is on the order of the precision of the 
arithmetic used (namely, the last one of the three significant digits of the result is wrong by 
one unit), which is actually not bad at all (many numerical methods show an annoying 
tendency to really amplify errors as they propagate). The anomalous result here is the 
practically 4-significant-digit precision obtained with the Lagrange base functions. This is 
necessarily a coincidence if one is using 3-significant-digit arithmetic! 

f) With the two new nodes I would add two new rows to the table of divided differences, 
calculate the unique interpolation polynomial p7(x), evaluate it at x = 6.8, and subtract p5(6.8) 
from it (so we get simply e5(6.8) ≈ h6(6.8) + h7(6.8), i.e., the two new terms evaluated at 
x = 6.8). 

This is a straightforward generalization of the theory we studied on the estimation of the error 
of an interpolation polynomial at z, in which just one additional node was used for the 
estimation. If we now have information from two new nodes and our best estimation of f (z) 
is, reasonably, p7(z), our best estimation of the error made with p5(z) must necessarily be 



 4

e5(z) = f (z) − p5(z) ≈ p7(z) − p5(z) = h6(z) + h7(z) (according to the definition of hi(x) at the 
beginning of the theory on Newton polynomials). 

I would use the Newton representation (table of divided differences), rather than the Lagrange 
base functions, so I can use the work done before and do not have to start all over from square 
one; but regardless of the representation used, it will still be valid that e5(z) ≈ p7(z) − p5(z). 

The assumption we are making is, of course, that p7(x) follows f (x) more closely than p5(x). 
That is not always true. 

Another reasonable way to answer to this question, even if not so precise, is to use the 
expression in the theory just as we studied it, i.e. e(z) = f [x0,x1,…,xn,z] Π(z), and estimate the 
divided difference in it, for instance, by the average of the two new divided differences of 
order n+1 that appear in the table after adding the two new nodes. 

g) If f (6.7) = 0 and f (6.9) = 0, f (6.8) is going to be very close to 0, so the error made with 
p5(6.8) is going to be very close to −p5(6.8), namely, error about 15 (i.e., in defect). 

2.- 
a) Cubic splines are optimal in that they are least-oscillating in the following precise sense. 

Let there be n+1 nodes x0
 < x1

 < ··· < xn and the corresponding nodal ordinates y0, y1, ···, yn. 

Consider the set G of all functions g∈C2([x0,xn]) satisfying the interpolation data, i.e., such 
that g(xi) = yi (i = 0,...,n), and also such that g"(x0) = g"(xn) = 0. 

By definition, the natural cubic spline s3(x) by those nodes belongs to G (since it is 
sufficiently smooth, i.e. of class C2; it satisfies the interpolation data; and, being a natural 
spline, s"(x0) = s"(xn) = 0): s3

 ∈ G 

Now, if one measures oscillations in a specific, reasonable way, it can be proved that there is 
no other function in G that oscillates less than s3! 

The way to measure oscillations is the integral between x0 and xn of the square of the second 
derivative of the function. This is reasonable, because the second derivative of a function is 
directly related with its curvature (albeit not via direct proportionality), and a straight line, 
which has clearly no oscillations, has identically zero second derivative. The derivative is 
squared so that there is no cancellation of its positive and negative values in [x0,xn]. 

The result reads: [ ] [ ]
0 0

2 2
3( ) ( )n nx x

x x
g x dx s x dx g G′′ ′′≥ ∀ ∈∫ ∫  
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b) The figure shows s3(x) oscillating less than p5(x). Near the middle of the interval, for 
instance, we can see that p5(x) is close to −16, while s3(x) is close to −6. 

The question arises as to why, if s3(x) is the least-oscillating function in G, its absolute value 
near the center of the interval cannot be even less than about 6. The answer is that then s3"(x) 
must increase somewhere else in [0,12.5], and the integral figure of merit measuring 
oscillations increases. 

3.- 
a) The open Newton-Cotes rule of two nodes has distance between nodes h = (b−a)/3 and 
nodes x0

 = a+h, x1
 = a+2h, where a and b are the limits of integration. The weights or 

coefficients do not depend on a and b alone, but only on their difference (or, alternatively, 
on h). This allows one to set the origin of abscissas on the midpoint of [a,b] so as to calculate 
the coefficients more easily but without loss of generality. The following figure shows a, b 
and the nodes x0, x1 in terms of h:  

  

f (x) 
 

 h hh

−h/2 h/2
x0 x1

x
a b

y 

−3h/2 3h/2  

We will determine the two coefficients by imposing the exact integration of the monomials 
1, x. Like this the rule will also integrate exactly any linear combination of them, i.e. the rule 
will be exact in P1. Calling the coefficients A0, A1: 

  

3 2

0 13 2
0 13 2

0 13 2

(1) 1 1 3 1 1 3
2(1) 0 ( 3 2) ( 3 2)

h

h

h

h

f dx h A A hA A
f x xdx A h A h

−

−

⎧ ⎫= → = = +⎪ ⎪ ⇒ = =⎨ ⎬
⎪ ⎪= → = = − + −
⎩ ⎭

∫

∫
 

b) The polynomial degree is at least 1 (and actually 1), so the error term is of the form 
E = K f "(ξ ) for some ξ ∈ (a,b):  

  
3 2

0 13 2

3 3( ) ( ) ( ) ( )
2 2

h

h

h hf x dx f x f x K f ξ
−

′′= + +∫  

If we apply this to the function f (x) = x2 (the first monomial that is not integrated exactly), 
which is convenient because its second derivative is constant, which will allow us to 
determine K:  

  
2 233 22 2

3 2

(3 2) 3 3( ) 2 2
3 2 2 2 2

h

h

h h h h hf x x x dx K
−

−⎛ ⎞ ⎛ ⎞= → = = + + ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫  
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3 3 3 3 39 3 6 3 3 ( )2

4 4 8 4 4S
h h h h h fK K E ξ′′

= + ⇒ = = ⇒ =  

for some ξ between a and b, where ES stands for the error of the simple rule. 

c) The compound rule is consists in subdividing [a,b] into N subintervals of equal width and 
applying the simple rule to each one of them. Therefore, the error of the compound rule EC is 
the algebraic sum of the errors made with the N simple rules: 

  
3 3

1 1 1

3 ( ) 3( ) ( )
4 4

N N N
i

C S i
i i i

h f hE E i fξ ξ
= = =

′′
′′= = =∑ ∑ ∑  

where ξi is some point belonging to the i-th subinterval [ai,bi]. Multiplying and dividing by N: 

  
3 3

1
( )

3 3
4 4

N

i
i

C

f
h hE N N f

N

ξ
=

′′
′′= =

∑
 

where f ′′  is the arithmetic mean of the N values ( )if ξ′′ . As such, it must be some 

intermediate value between the greatest and the smaller of them. Assuming that f "∈C([a,b]), 
by virtue of Weierstrass’s Intermediate Value Theorem, there must be at least one ξ ∈C[a,b] 
such that ( )f fξ′′ ′′= , and substituting: 

  
3 3 23 3 ( ) ( ) ( )( ) ( )

4 4 3 4C C
h h b a h b a fE N f f E

h
ξξ ξ

′′− −′′ ′′= = ⇒ =  (1) 

for some ξ between a and b. 

d) To guarantee that the absolute error does not exceed 5·10−4 we express the limiting case 
writing, with some abuse of notation (which there’s nothing wrong with if you know what 
you are doing):  

  
2

4( ) ( ) 5 10
4C

h b a fE ξ −′′−
= = ⋅  

For the worst-case scenario, we will substitute f "(ξ ) by its maximum absolute value in the 
interval [0,0.3]:  

  

2

2

2 2 22

2( )

2( ) ( 2 )

2 2( ) ( 2 )( 2 ) 2 (4 2)

x

x

x x x

f x e

f x x e

f x x x e e x e

π

π

π π

−

−

− − −

=

′ = −

⎡ ⎤′′ = − − − = −⎣ ⎦
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We have been told that this is an increasing function in [0,0.3]. Functions that are monotonic 
in an interval (i.e., functions that are either increasing or decreasing in that interval) take their 
extreme values in the interval at its endpoints, and are therefore bounded by them:  

  
22 02 4(0) (4 0 2) 2.257f e

π π
− −′′ = × − = = −  

  
22 0.32(0.3) (4 0.3 2) 1.691f e

π
−′′ = × − = −  (2) 

The larger absolute value is the first one. Hence we write: 

  
2 4

4(0.3 0) 2.257 20 105 10 0.00295 0.0543
4 0.3 2.257

h h
−

−× − × ×
= ⋅ → = = =

×
 

  0.3 0 1.84 2 subintervals suffice
3 3 0.0543

b aN N
h
− −

→ = = = ⇒ =
×

 

Now it is obvious that we have been abusing notation for a while, because N must be an 
integer, so it could not be equal to 1.84; however, since we know in what sense precision 
improves (the more subintervals, the better), we take N = 2 > 1.84 to “err on the side of 
caution”, and in this way the absolute error is guaranteed to be less than 5·10−4. 

e) The first subinterval is [0,0.15] with nodes 0.05 and 0.10; and the second one is 
[0.15,0.30] with nodes 0.20 and 0.25. The distance between the nodes in each subinterval is 
h = 0.05 weights are all 3h / 2 = 0.075: 

  
( )2

2

0.075 (0.05) (0.10) (0.20) (0.25)

0.075 (1.12556 1.11715 1.08413 1.06001) 0.075 4.38685 0.32901

Q f f f f

Q

= × + + + =

= × + + + = × = =
 

f) From (1) and (2): 
2 2( )( 2.257) ( )( 1.691)

4 4C
h b a h b aE− − − −

≤ ≤  

  
2 20.05 0.3 ( 2.257) 0.05 0.3 ( 1.691)

4 4CE× × − × × −
≤ ≤  

  [ 0.00042, 0.00032]CE ∈ − −  

The error actually made is (with 5 decimals): 

  EC = erf(0.3) − Q2 = 0.32863 − 0.32901 = −0.00038 

which clearly belongs to the interval as expected. 

g) The order of convergence of the compound rule is p = 2 because that is the exponent of h 
in (1). If we pass from N = 2 to N = 4 subintervals, h is divided by 2, and therefore the error 
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will be divided by 2p = 4 approximately:  

  2
4

0.00038 0.000095
4 4
EE −

≈ = = − ⇒  

  4 4erf(0.3) 0.32863 0.000095 0.328725Q E≈ − = − − =  

N.B. It is not asked, but applying the compound rule with N = 4 subintervals, the result is 
0.328724, which is very much as expected. 

h) For the absolute error to be less than 10−16 we proceed like in section d). With some 
abuse of notation:  

  
2 16

16(0.3 0) 2.257 4 1010
4 0.3 2.257

h h
−

−× − × ×
= → = →

×
 

  6
16

0.3 0 0.3 2.257 4114 304 4 10  subintervals
3 3 4 10

b aN N
h −

− − ×
= = ≈ → > ×

×
 

We would need more than 4 million subintervals to guarantee double precision in erf(0.3) 
(and that, assuming that there were no roundoff error propagation). The obvious practical 
conclusion is that this rule is too bad for this purpose. Newton-Cotes rules are actually all too 
bad for many serious applications. In general, whenever you want to get “value for money” 
(precision for computational cost), Gauss rules are the way to go. A compound Gauss-
Legendre rule with a good number of nodes and many subintervals (but not on the order of 
the millions!) might get the job done. In practice, there exist very optimized series expansions 
that allow to calculate erf and many other functions with very high precision and much, much 
less computational cost. 

4.- 
a) This is the THEORY about the “instability of numerical differentiation”. See your 
classroom notes (either the ones you took from the blackboard or the Spanish version, p. 112). 

b) This is obviously going to be the first centered difference formula studied in the subject 
for f "(z) (with order of convergence 2) but with 2h instead of h. I will obtain it using ad-hoc 
Taylor series expansions. (To see how to obtain it by differentiating the error term of the 
interpolation polynomial, see the classroom notes and replace h with 2h throughout. And you 
can also follow the more general theory to obtain difference formulas to approximate f k)(z) 
and particularize it for k = 2, h0

 = −2h, h1
 = 0, h2

 = 2h; see for instance the exam of the ordinary 
2014 call.) 

I will write the two Taylor expansions of interest as infinite series, and later decide where it is 
convenient for me to truncate them (i.e., what Taylor remainder to write and what smoothness 
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conditions to demand from f (x)):  

  
3) 4)

2 3 4( ) ( ) ( )( 2 ) ( ) ( )2 (2 ) (2 ) (2 )
2! 3! 4!

f z f z f zf z h f z f z h h h h
′′

′− = − + − + +  

  
3) 4)

2 3 4( ) ( ) ( )( 2 ) ( ) ( )2 (2 ) (2 ) (2 )
2! 3! 4!

f z f z f zf z h f z f z h h h h
′′

′+ = + + + + +  

Now it is clear to me that I want to add them term by term, and that I want to use the Taylor 
remainders of order 4:  

  
4) 4)

2 4 41 2( ) ( )( )( 2 ) ( 2 ) 2 ( ) 2 (2 ) (2 ) (2 )
2! 4! 4!

f ff zf z h f z h f z h h hξ ξ′′
− + + = + + +  

for some ξ1∈(z−2h,z) and ξ2∈(z,z+2h), and assuming that f∈C4([z−2h,z+2h]) (or at least 
that f 4) exists and is bounded in that interval). 

Isolating f "(z): 
4) 4)

21 2
2

( ) ( )( 2 ) ( 2 ) 2 ( )( )
4 6

f ff z h f z h f zf z h
h

ξ ξ+− + + −′′ = −  

As h tends to 0+, ξ1 tends to z from the left and ξ2 tends to z from the right. If f 4) is continuous 
in a neighborhood of z, both terms in the last numerator will tend to f 4)(z), which is finite 
(possibly 0), so the last term is a remainder O(h2), i.e., it tends to 0 “at least as fast as 
(proportionally to) h2” –maybe faster, if f 4)(z) turns out to be 0–. If f 4) is continuous, the last 
numerator will be equal to 2f 4)(ξ ) for some ξ near z. 

To give mathematical rigor to these essentially correct reasoning, consider the function 
g(x) = 2f 4)(x). Its value on ξ1 is 2f 4)(ξ1), and its value on ξ2 is 2f 4)(ξ2). The numerator 
f 4)(ξ1) + f 4)(ξ2) is an intermediate value one between both of them –just check the cases 
f 4)(ξ1) < f 4)(ξ2), f 4)(ξ1) > f 4)(ξ2), and f 4)(ξ1) = f 4)(ξ2)–. Therefore, if g ∈ C([ξ1,ξ2]) (which we 
are assuming, since f∈C4([z−2h,z+2h]), and ξ1∈(z−2h,z), ξ2∈(z,z+2h)), by virtue of 
Weierstrass’s Intermediate Value Theorem, there must exist at least one ξ ∈ (ξ1,ξ2) such that 
g(ξ ) = f 4)(ξ1) + f 4)(ξ2). Therefore, f 4)(ξ1) + f 4)(ξ2) = 2f 4)(ξ ) for some ξ ∈ (z−2h,z+2h). 

Substituting: 
4)

2
2

( 2 ) 2 ( ) ( 2 ) ( )( )
4 3

f z h f z f z h ff z h
h

ξ− − + +′′ = −  

c) The error term is: 
4)

2( ) for some ( 2 , 2 )
3
ξ ξ= − ∈ − +

fE h z h z h  (3) 

Since E = O(h2), the formula is of order of convergence 2, which means that the truncation 
error tends to 0 proportionally to h2 (or faster). 

And the formula is of order 3 because it is exact in P3 (since every polynomial of degree ≤ 3 
has identically-zero fourth derivative, hence E = 0) but not in P4 (because x4 has identically 

non-zero fourth derivative, hence E ≠ 0). 
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A note about the terminology: The order of convergence is sometimes also referred to as the 
order of precision (in our case, 2) because it describes how fast the error decreases (i.e., the 
precision increases) as h decreases. The word order (without further specification) of the 
formula (in our case 3, because the formula is exact in P3 but not in P4) can lead to confusion 

with the order of convergence or of precision, so it is sometimes also referred to as the 
polynomial degree of the formula, which is a much more descriptive term. In general, the 
word “order” often refers to the number of times a function is differentiated (like in the order 
of a differential equation, not its degree), while the word “degree” often refers to the value of 
an exponent or power (like in the degree of a polynomial, not its order). 

d) The total error ET is equal to the truncation error E (the one we would make with exact 
data and exact arithmetic) plus the roundoff error Er (by definition, the one attributable 
exclusively to inexact data and inexact arithmetic): 

  ET = E + Er 

Therefore: |ET| ≤ |E| + |Er| 

We will try to minimize the maximum absolute error that can be made, so we will substitute 
both right-hand terms by respective upper bounds of them, and then minimize the sum. 

An upper bound of |E| can be obtained from (3): 

  2

3
≤

ME h  

where M is any upper bound of | f 4)(ξ ) |. We will later calculate M. 

As for |Er|, the roundoff error Er was modeled and approximated in section a) (the theory 
about “instability of numerical differentiation”). We did not get an exact value, because we 
only considered errors in the data ordinates (not abscissas) and we didn’t analyze error 
propagations either; but that would be out of the scope of this subject, and the theory studied 
is enough to get a good idea about the value of the roundoff error. 

So from section a), we know that the amplification factor AF is equal to the sum of the 
absolutes of the coefficients; in our case: 

  2 2 2 2 2

1 2 1 1
4 4 4

εε= + + = ⇒ ≤ ⋅ =rAF E AF
h h h h h

 

where ε is the maximum absolute error in the nodal ordinates, i.e. in the values f (z−2h), f (z), 
f (z+2h). 

Substituting: 2
2 ( )

3T
ME h g h

h
ε

≤ + =  
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To minimize g(h): 4
3

2 3( ) 2 0
3
Mg h h h

h M
ε ε′ = − = ⇒ =  

(We see that it’s a minimum rather than a maximum because 4( ) 2 3 6 0g h M hε′′ = + > ; and 

we expected that to be the case because truncation errors increase as h increases and roundoff 
errors increase as h decreases, so there must be an optimum, i.e. a minimum, somewhere in 
between.) 

Regarding the value of M, since we are not told for what z we must apply the formula, we will 
take M to be the maximum of | f 4)(x)| for x ∈ (−∞,∞) –if it exists–. Differentiating four times, 
f 4) = f, and its maximum absolute value takes place at x = π /4 + kπ (since f 5)(x) = 0 ⇒ 
cos(x) − sin(x) = 0 ⇒ x = π /4 + kπ ⇒ | f 4)(x)| ≤ | sin(π /4) + cos(π /4) | = 2·21/2/2 = 21/2). 
Substituting we obtain the optimal value of h, hopt, in terms of ε : 

  4 3 2opth ε=  

As for the value of ε, it depends on the precision of the data. If the data are not experimental, 
that depends mostly on the precision of the arithmetic used (rather than the precision of the 
measuring device used). With double-precision arithmetic, and a function like 
f (x) = sin(x) + cos(x), whose values are in the range between −21/2 and 21/2, the maximum 
value of ε will be on the order of 10−16. Substituting1: 

  164 3 10 2 0.00012opth −≈ ⋅ =  

which gives us a very reasonable value of h to use. That’s interesting, because with about 
16 significant digits in the arithmetic, one would probably expect to have a few more orders 
of magnitude to safely decrease h… isn’t that what you would’ve expected? 

With simple-precision arithmetic, i.e. with ε on the order of 10−8, as used by many 
programming languages to speed up calculations over double-precision ones, we get: 

  84 3 10 2 0.012opth −≈ ⋅ =  

which is surprisingly large too, but actually quite close to the optimal value, as can be 
checked by actually carrying out the calculations. 

5.- 
a) Picard’s Theorem provides sufficient (although not necessary) conditions for the 

                                                 
1 A bit more precisely, MATLAB, which uses double-precision arithmetic by default, gives 2.22e-16 as the result of 
eps(sqrt(2)), i.e., as the distance to the closest number to 21/2 that it can represent. 
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existence and uniqueness of the solution to initial value problems. We will check if the 
problem at hand meets the conditions of the theorem, which states: 

Let D be the region of the ty plane D = {(t,y) / t0
 ≤ t ≤ tf, −∞ < y < ∞}. If f ∈ C(D) and it verifies 

the Lipschitz condition for the variable y, namely, if ∃ L > 0 such that  
  | f (t,y2) − f (t,y1)| ≤ L | y2

 − y1
 | ∀ (t,y2), (t,y1) ∈ D 

then the problem y' = f (t,y) with y(t0) = y0 has a unique solution y(t) for t ∈ [t0,tf].  
It is both intuitive and easy to prove (see Classroom Notes) that a sufficient condition for f to 
be Lipschitzian in this sense is that |∂f /∂y| ≤ L, i.e., that fy is bounded in D (and f, fy ∈ C(D)). 

In our case, both f (t,y) = (1+t)y and fy(t,y) = 1+t ∈ C(R2), and the absolute value of the latter is 

upper-bounded in D by the Lipschitz constant L = 1.5 (since in our problem D is the region 
between t0

 = 0 and tf = 0.5). Therefore, the solution y(t) to the problem exists and it is unique. 

b) The four points provided are the ones needed to start the multistep method of order 4 we 
are requested to apply. This is typically done using the Runge-Kutta method of the same order 
of convergence as the multistep method we will use, in our case RK4. Even if the points are 
provided, just out of curiosity, let’s see if they are indeed the ones obtained with the RK4 
method. Using MATLAB, the numbers are: 

 >> f = @(t,y) (1+t).*y; 
 >> t0 = 0; 
 >> y0 = 1; 
 >> [tt,yy] = anm_ode(f,[t0 t0+3*h],y0,3,'RK4') 
    tt =   0   0.1          0.2          0.3 
    yy =   1   1.1107105   1.2460764   1.4119892 
 >> ff = f(tt,yy) 
    ff =   1   1.2217815   1.4952917   1.8355859 

Therefore RK4 seems indeed to be the method used, although f2 has apparently been wrongly 
rounded to 1.49530 instead of to 1.49529. In any case, we will use the numbers provided. 

We now have to take the next two steps (in the sense of calculating two more points, y4 
and y5). We will first define the functions of the advance formulas of the AB4 and AM4 
methods (noted like this because they are both of order of convergence 4). The following is an 
almost-literal transcription of the advance formulas provided in the exercise statement: 

 >> ab4=@(yn,h,fn,fnm1,fnm2,fnm3) yn+h/24*(55*fn-59*fnm1+37*fnm2-9*fnm3); 
 >> am4=@(yn,h,fnM1,fn,fnm1,fnm2) yn+h/24*(9*fnM1+19*fn-5*fnm1+fnm2); 

For the first prediction, using AB4, these are the numbers we will need in order to apply the 
formula for n = 3 (from the exercise statement): 

 >> f0 = 1; 
    f1 = 1.22178; 
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    f2 = 1.49530;   # prolly meant to be 1.49529 
    f3 = 1.83559; 
    y3 = 1.41199; 

Applying the formula: 

 >> y40 = ab4(y3,h,f3,f2,f1,f0) 
    y40 = 1.6159092 

The result has been called y40 to stand for “y4
(0)”, or 0-th estimate (the only role played by the 

“prediction” provided by AB4 is to be the starter of the fixed-point AM4 iterations). 

Now the method requires us to carry out fixed-point corrections with the AM4 method until 
the “precision” in the calculation of the solution (in the sense of the distance between the last 
two values yn calculated) does not exceed 10−4. For the first correction: 

 >> t4 = 0.4; f40 = f(t4,y40) 
    f40 = 2.2622729 
 >> y41 = am4(y3,h,f40,f3,f2,f1) 
    y41 = 1.6160814 

where y41 stands for “y4
(1)”. Let’s see if the distance between y40 and y41 exceeds 10−4: 

 >> abs(y41-y40) 
    ans = 0.00017 

It does, so we need to make a second correction and check for the termination criterion: 

 >> f41 = f(t4,y41) 
    f41 = 2.2625140 
 >> y42 = am4(y3,h,f41,f3,f2,f1) 
    y42 = 1.6160905 
 >> abs(y42-y41) 
    ans = 9.042e-006 

Since the distance does not exceed 10−4, we can take this value as definitive in t4
 = 0.4: 

 >> y4 = y42 
    y4 = 1.6160905 

Now comes a prediction of y5 with AB4 and fixed-point corrections with AM4 until the 
termination criterion is met. The process is very similar: 

 >> f4 = f(t4,y4) 
    f4 = 2.2625267 
 >> y50 = ab4(y4,h,f4,f3,f2,f1) 
    y50 = 1.8680456 
 >> t5 = 0.5; f50 = f(t5,y50) 
    f50 = 2.8020685 
 >> y51 = am4(y4,h,f50,f4,f3,f2) 
    y51 = 1.8682737 
 >> abs(y51-y50) 
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    ans = 0.0002281 
 >> f51 = f(t5,y51) 
    f51 = 2.8024106 
 >> y52 = am4(y4,h,f51,f4,f3,f2) 
    y52 = 1.8682865 
 >> abs(y52-y51) 
    ans = 1.28e-005 
 >> y5 = y52 
    y5 = 1.8682865 

All the operations were internally performed with double-precision arithmetic. You can round 
off all the results above to 5 decimals so as to comply with the exercise requirement. 

Using the function anm_ode yields the same result (maybe with slightly better precision due to 
the fact that it does apply RK4 to start the method, instead of using the truncated values 
provided in the exercise statement): 

 >> [tt,yy,ci] = anm_ode(f,[t0 0.5],y0,5,'PC4',1e-4) 
    tt =  0  0.1         0.2         0.3         0.4         0.5 
    yy =  1  1.11071049  1.24607639  1.41198919  1.61608949  1.86828541 
    ci =  
    []     []     []     []    [               2]    [               2] 
    []     []     []     []    [1.61590975632967]    [1.86804397513036] 
    []     []     []     []    [1.61608052092319]    [1.86827255239958] 
    []     []     []     []    [1.61608948606435]    [1.86828540987097] 
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