AMPLIACIÓN DE MÉTODOS NUMÉRICOS

GRADO EN TECNOLOGÍA INDUSTRIAL

5 DE JULIO DE 2014

Nota: el examen se realizará de forma ininterrumpida (sin descanso intermedio), y se valorará sobre 35 puntos.

1.- Los siguientes puntos dato provienen de cierta función f(x):

_	x_i	$x_0 0$	× ₁ 1 .	્ 1.5	ر 11 _ک	.11.5	≤12.5
	y_i	0	1	0	0	1	0

Trabajando con aritmética de 3 dígitos significativos:

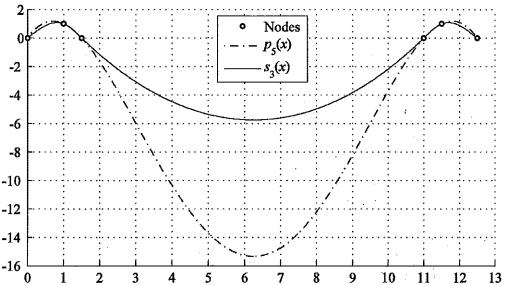
a) Calcula la tabla de diferencias.

(1.5p)

- b) Escribe el polinomio de Newton $p_5(x)$, e indica su grado. ¿Existirá algún otro polinomio distinto de éste que también pase por esos puntos? ¿De qué grado? (1.5p)
- c) ¿En qué sentidos es óptimo el algoritmo de Hörner para evaluar polinomios? (0.5p)
- **d)** Evalúa $p_5(6.8)$ óptimamente.

(1p)

- e) Escribe $p_5(x)$ mediante funciones base de Lagrange, y evalúalo en 6.8. Sabiendo que $p_5(6.8) = -15.0052$..., ¿te sorprende algo en el resultado obtenido? (1.5p)
- f) Si tuvieras dos nuevos puntos dato de f(x), describe los cálculos que harías para estimar el error cometido al aproximar f(6.8) mediante $p_5(6.8)$. (1.5p)
- g) Si f(6.7) = 0 y f(6.9) = 0, estima dicho error sin hacer ninguna operación. (0.5p)
- 2.- a) Explica con detalle en qué sentido son óptimos los esplines cúbicos naturales. (2p)
 - b) Comenta el resultado anterior en relación a la siguiente figura, que muestra el polinomio de interpolación $p_5(x)$ y el spline cúbico natural $s_3(x)$ por los datos de la tabla inicial del ejercicio anterior: (1p)



3.- La función error de Gauss (o simplemente función error) es una función especial (no elemental) que aparece en probabilidad, estadística, ecuaciones en derivadas parciales, etc., y que se define así:

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

Se quiere aproximar erf(0.3) usando la regla de Newton-Cotes de dos nodos abierta compuesta.

- a) Calcula los pesos de la regla simple en términos de la distancia h entre nodos. (1p)
- b) Calcula el término de error de la regla simple. (1p)
- c) Calcula el término de error de la regla compuesta, justificando los pasos dados. (1p)
- d) Sabiendo que la segunda derivada de $\exp(-t^2)$ es creciente en [0,0.3], ¿cuántos subintervalos N garantizan un error absoluto menor que $5 \cdot 10^{-4}$? (1p)
- e) Calcula con 5 decimales el valor que se obtiene con ese número de subintervalos. (1p)
- f) Acota el error cometido en el apartado anterior y, sabiendo que el valor exacto es erf(0.3) = 0.32862675946..., comprueba que se cumple dicha acotación. (1p)
- g) A partir del valor exacto y del orden de convergencia del método, estima el resultado que esperaríamos obtener con N=4 subintervalos. (1p)
- h) El estándar IEEE 754 de aritmética de doble precisión maneja unos 16 dígitos decimales significativos (no exactamente 16 porque las operaciones se hacen en base 2). Calcula cuántos subintervalos N se requerirían para garantizar un error absoluto menor que 10⁻¹⁶, y saca alguna conclusión práctica del resultado. (1p)
- **4.- a)** Deducir la expresión del factor de amplificación del error de redondeo de una fórmula de derivación numérica para el cálculo de $f^{k}(z)$. (4p)
 - b) Obtener una fórmula que aproxime el valor de f''(z) de la forma más precisa posible a partir de la información proporcionada por la función f(z) en los puntos z, (z+2h), y (z-2h).
 - c) Obtener el término de error. ¿De qué orden es la fórmula obtenida? (2p)
 - d) Determinar el tamaño h óptimo de la fórmula obtenida para la función $f(x) = \sin(x) + \cos(x)$. (2p)
- 5.- a) Comprobar que el siguiente problema tiene solución única en el intervalo [0,0.5]:

$$\begin{cases} y' = (1+x)y\\ y(0) = 1 \end{cases} \tag{1p}$$

b) Utilizando los valores de la siguiente tabla:

x_i	y_i	f_i	
0	1	1	
0.1	1.11071	1.22178	
0.2	1.24608	1.49530	
0.3	1.41199	1.83559	

aplicar el método predictor-corrector de Adams para obtener dos puntos más de la solución del problema anterior con h=0.1. En cada punto realizar el número de iteraciones necesarias para obtener una precisión de 10^{-4} en el cálculo de la solución usando un esquema $P(EC)^{S}E$. Operar con redondeo a 5 decimales.

Predicciones: Adams-Bashforth de 4 pasos:

$$y_{n+1} = y_n + \frac{h}{24} [55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3}]$$

Correcciones: Adams-Moulton de 3 pasos:

$$y_{n+1} = y_n + \frac{h}{24} [9f_{n+1} + 19f_n - 5f_{n-1} + f_{n-2}]$$
 (5p)