Leire Unanue, Clara López de Aguileta and Marta Apeztegia

1. AIM

- 2. THEORETICAL BACKGROUND
- 3. EXPERIMENTAL PROCEDURE
- 4. BIBLIOGRAPHY

1. AIM

• Determine the conductivity of different electrolytic solutions.

• Verify the validity of different theories for the case of strong and weak electrolytes.

• Obtain the dissociation constant for a weak electrolyte.

2. THEORETICAL BACKGROUND

• Electrolytes: substances that separate when in a solution (ions).

- If an electric field is applied, ions move towards the electrodes that have an opposite sign:
 - Cations
 - Anions +

• Solutions of diluted electrolytes meet:

_

- Molar conductivity: $\Lambda = \frac{k}{c}$
- Kohlrausch's law (strong electrolytes):

$$\Lambda = \Lambda^{0} - b\sqrt{c}$$
Limiting molar conductivity: $\Lambda^{0} = \nu_{1}\lambda_{1}^{0} + \nu_{-}\lambda_{-}^{0}$

• Ostwald's law of dilution :
(weak electrolytes)
$$\frac{1}{\Lambda} = \frac{1}{\Lambda^0} + \frac{c\Lambda}{K_c(\Lambda^0)^2}$$
 or $\Lambda^0_{HAc} = \Lambda^0_{KAc} + \Lambda^0_{HCI} - \Lambda^0_{KCI}$

Different equations because of the dissociation of ions: -Strong electrolytes \rightarrow dissociate completely -Weak electrolytes \rightarrow dissociate partially. The degree of dissociation is given by: $\alpha = \frac{\Lambda}{\Lambda^0}$

3. EXPERIMENTAL PROCEDURE

1. Prepare NaOH solution:

2. Prepare the water

Conductivity meter

Measure the specific conductivity of the water that

will be used to prepare the electrolyte solutions.

3. Prepare electrolyte solutions:

3. Measure specific conductivity and normalise with NaOH:

4. Prepare KCl and CH3CO2K solutions:

0								
	100 mL		100 mL		100 mL		100 mL	
	0,05 M		0,025 M		0,01 M		0,005 M	
250mL KCl 0,1M								Ê
100 mL		100 mL		100 mL		100	100 mL	
0,05 M		0,025 M		0,01 M		0,005 M		250mL CH3CO2K
								0,1M

5. Measure conductivity

Of all the KCl and CH3CO2K solutions.

4. BIBLIOGRAPHY

1. <u>https://egela.ehu.eus/mod/resource/view.php?id=2016822</u>